Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
^A+^B+^C=1800
⇒1000+200+^C=1800
⇒^C=1800−1000−200=600
⇒^A>^C>^B
Áp dụng quan hệ giữa cạnh và góc đối diện => BC > AB >AC
b) Vì AB>AC nên HB>HC(theo quan hệ giữa đường xiên và hình chiếu)
hok tốt !!!
a)Xét tam giác ABC: \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\), mà góc A =100 độ ⇒^B+^C=80 độ
Áp dụng công thức tổng tỉ, ta có: ^B= 80:4.3=60 độ
Vậy ^C=20 độ, từ đó so sánh 3 cạnh của tam giác
b) Từ câu trên, ta có: AB<AC (1)
Có HB là hình chiếu của AB (2)
Có HC là hình chiếu của AC (2)
Từ (1) và (2) có HB<HC
a, Áp dụng định lý tổng ba góc cho tam giác abc, ta có:
a+b+c=180
thay: 100+20+c=180
suy ra: c=180-(100+20)=60
áp dụng đ/l cạnh đối diện vs góc lớn hơn, ta có:
a>c>b suy ra: bc>ab>ac
b, theo câu a, ta có:
ab>ac
mà:ah vuông góc vs ac
suy ra: hc là hình chiếu của ac
hb là hình chiếu của ab
do đó: hb>hc( t/c đường xiên và hình chiếu của chúng)
- các bạn ơi 1 like nha
a, Áp dụng định lý tổng 3 góc của tam giác vào tam giác ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow100^0+20^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-100^0-20^0=60^0\)
\(\Rightarrow\widehat{A}>\widehat{C}>\widehat{B}\)
Áp dụng quan hệ giữa cạnh và góc đối diện \(\Rightarrow BC>AB>AC\)
b) Vì AB>AC nên HB>HC(theo quan hệ giữa đường xiên và hình chiếu)
A S B H
a.
Trong tam giác ABS, có: \(\widehat{A}+\widehat{B}+\widehat{S}=180\) hay \(100+20+\widehat{S}=180\)
Suy ra: \(\widehat{S}=60\)
Trong tam giác ABC, có: \(\widehat{B}< \widehat{S}< \widehat{A}\)(20<60<100)
Nên AS < AB < BS
b.
Trong tam giác AHS (\(\widehat{H}=90\)), có: AS > AH (cạnh huyền AS)
Trong tam giác AHB (\(\widehat{H}=90\)), có: AB > HB (AB là cạnh huyền)
Mà AS < AB nên AH < HB (đpcm)
a)Xét t/giác ABC có AB>AC
⇒ ACB>ABC(quan hệ giữa góc và cạnh đối diện)
b) Ta có: AB > AC (gt)
⇒ HB > HC (quan hệ giữa hình xiên và đường chiếu của chúng)
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Xét tam giác ABC: ^A+^B+^C=180 độ, mà ^A=100 độ \(\Rightarrow\)^B+^C=80 độ
Áp dụng công thức tổng tỉ, ta có: ^B= 80:4.3=60 độ
Vậy ^C=20 độ, từ đó so sánh 3 cạnh của tam giác nha
Từ câu a, ta có: AB<AC (1)
Có HB là hình chiếu của AB (2)
Có HC là hình chiếu của AC (2)
Từ (1) và (2) có HB<HC