Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đường cao 6,72 (đvđd)
Diện tích hai tam giác vuông tạo thành là : 6,5856 và 77,4144(đvdt)
diện tích 2 tam giác vuông tạo thành chính là diện tích tam giác vuông.
Vậy diện tích tam giác vuông chính là diện tích 2 tam giác vuông tạo thành :
7 . 24 : 2 = 84
Vậy diện tích 2 tam giác vuông tạo thành là 84
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=7^2+24^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có HA là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=6.72\left(cm\right)\\BH=1.96\left(cm\right)\\CH=23.04\left(cm\right)\end{matrix}\right.\)
Giả sử tam giác ABC có , AB = 5, AC = 7
Theo định lí Pi-ta-go, ta có:
B C 2 = A B 2 + A C 2
⇒ BC =
Theo hệ thức liên hệ giữa đường cao và cạnh trong tam giác vuông, ta có:
AH.BC = AB.AC ⇒ AH =
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó, ta có:
A B 2 = B H . B C ⇒ BH =
CH = BC – BH =
Cho tam giác ABC vuông tại A, AH là đường cao. AB = 24cm, AC = 7cm.
Áp dụng định lý Pytago ta có: \(BC=\sqrt{AC^2+AB^2}=\sqrt{7^2+24^2}=25.\)
Áp dụng hệ thức lượng ta có:
\(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{24.7}{25}=6.72\)
\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{7^2}{25}=1,96\)
\(\Rightarrow HB=BC-HC=25-1.96=23.04\)
Không mất tính tổng quát g/s: MN<MP => NH=7 ; HP=12
Ta có:
\(NP=NH+HP=7+12=19\)
\(MP^2=HP.NP=12.19=228\Rightarrow MP=2\sqrt{57}\)
\(NM^2=NH.NP=7.19=133\Rightarrow NM=\sqrt{133}\)
Vậy
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Giả sử tam giác ABC vuông tại A với \(AB=24\) ; \(AC=7\)
Kẻ đường cao AD ứng với cạnh huyền
Ta có: \(BC=\sqrt{AB^2+AC^2}=25\)
Áp dụng hệ thức lượng:
\(AC^2=CD.BC\Rightarrow CD=\dfrac{AC^2}{BC}=1,96\)
\(\Rightarrow BD=BC-CD=23,04\)
Áp dụng hệ thức lượng: \(AD^2=BD.CD\Rightarrow AD=\sqrt{BD.CD}=6,72\)
\(S_{ACD}=\dfrac{1}{2}AD.CD=6,5856\)
\(S_{ABD}=\dfrac{1}{2}AD.BD=77,4144\)