Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đoạn thẳng AM. Xét tam giác MAC. Chứng minh tương tự như bài 1.4 ta có MN < a, trong đó a là đoạn lớn nhất trong hai đoạn thẳng MA và MC. Nếu ta chứng minh được
MA < AC và MC < AC thì sẽ suy ra được a < AC, từ đó có MN < AC.
Trong tam giác ABC có AB ≤ AC, M ∈ BC (M ≠ B, M ≠ C); Chứng minh tương tự bài 1.4, ta có AM < AC. Mặt khác MC < BC ≤ CA. Vậy a < AC, suy ra MN < AC.
Hình bạn tự vẽ
a, Nối M với N
Xét △BMN có:
BM=BN(gt)
=>△BMN cân tại B
=>∠BMN=(1800 - ∠B) / 2 (1)
Mà ∠BAC=(1800 - ∠B) / 2 (△ABC cân tại B) (2)
Từ (1) và (2) => ∠BMN=∠BAC (3)
Mà ∠BMN đồng vị ∠BAC (4)
Từ (3) và (4) => MN//AC
b, Xét △CMB và △ANB có
\(\left\{{}\begin{matrix}\text{AB = AC (△ABC cân tại B)}\\\text{∠ABC chung}\\\text{BM=BN}\left(gt\right)\end{matrix}\right.\)
=>△CMB = △ANB (c.g.c)
=> ∠BMC = ∠BNC
=>∠BMN + ∠CMN = ∠BNM + ∠MNA
Mà ∠BMN = ∠BNM (△BMN cân tại B)
=>∠BMN + ∠CMN = ∠BMN + ∠MNA
=> ∠CMN = ∠MNA
=> △IMN cân tại I
=> MI=NI (5)
Mà BM = BN (6)
Từ (5) và (6) => BI là đường trung trực của MN
=> BI ⊥ MN
Có gì không hiểu bạn cứ hỏi mình