Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
Do đó; ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
c: BA=BH
EA=EH
=>BE là trung trực của AH
d: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
Do đó: E là trực tâm
=>BE vuông góc KC
HÌnh bạn tự vẽ nha
\(\text{a)Vì }BE\text{ là phân giác của }\Delta ABC:\)
\(\Rightarrow\widehat{ABE}=\widehat{EBH}\)
\(\text{Xét }\Delta ABE\text{ và }\Delta HBE\text{ có:}\)
\(BH=HA\left(gt\right)\)
\(BE\text{ chung}\)
\(\widehat{ABE}=\widehat{EBH}\left(cmt\right)\)
\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)
\(\Rightarrow\widehat{BAE}=\widehat{BHE}\text{(hai cạnh tương ứng)}\)
\(\text{Mà }\widehat{A}=90^0\left(gt\right)\)
\(\Rightarrow\widehat{H}=90^0\)
\(\Rightarrow EH\perp BC\)
\(\text{b)Vì }\Delta ABE=\Delta HBE\left(cmt\right)\)
\(\Rightarrow AE=EH\)
\(\Rightarrow\text{Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A (1)}\)
\(\text{Ta có:}BA=BH\left(gt\right)\)
\(\Rightarrow\text{Khoảng cách từ điểm B đến H bằng khoảng cách từ điểm B đến A (2)}\)
\(\text{Từ (1) và (2)}\)
\(\Rightarrow\text{BE là đường trung trực của AH}\)
\(\text{c)Vì }\widehat{A}=90^0\left(gt\right)\)
\(\Rightarrow AB\perp AC\)
\(\Rightarrow\widehat{EAK}=90^0\)
\(\text{Vì }EH\perp BC\left(cmt\right)\)
\(\Rightarrow\widehat{EHC}=90^0\)
\(\text{Xét }\Delta AEK\text{ và }\Delta HEC\text{ có:}\)
\(\text{AE = EH (cmt)}\)
\(\widehat{EAK}=\widehat{EHC}=90^0\)
\(\widehat{AEK}=\widehat{HEC}\text{(đối đỉnh)}\)
\(\Rightarrow\Delta AEK=\Delta HEC\left(g-c-g\right)\)
\(\Rightarrow EK=EC\text{(2 cạnh tương ứng)}\)
\(\text{d)Ta có:}BA=BH\left(gt\right)\)
\(\Rightarrow\Delta\text{BAH cân tại B}\)
\(\Rightarrow\widehat{BAH}=\dfrac{180^0-\widehat{ABH}}{2}\left(3\right)\)
\(\text{Vì }\Delta AEK=\Delta HEC\left(cmt\right)\)
\(\Rightarrow\text{AK = HC ( 2 cạnh tương ứng)}\)
\(\text{Ta có:}\text{AK = BA + AK}\)
\(\text{BC = BH + HC}\)
\(\text{Mà BA = BH ( gt )}\)
\(\text{AK = HC ( cmt)}\)
\(\Rightarrow\text{BK = BC}\)
\(\Rightarrow\Delta\text{BKC cân tại B}\)
\(\Rightarrow\widehat{BKC}=\dfrac{180^0-\widehat{KBC}}{2}\left(4\right)\)
\(\text{Từ (3) và (4)}\)
\(\Rightarrow\widehat{BAH}=\widehat{BKC}\)
\(\text{Mà chúng đồng vị}\)
\(\Rightarrow\text{AH // BC}\)
\(\text{Ta có:}\Delta\text{BKC cân tại B}\)
\(\text{M là trung điểm BC }\)
\(\Rightarrow\text{BM là đường trung tuyến đồng thời là đường phân giác của }\Delta BKC\)
\(\text{Có BK là đường phân giác của tam giác BKC (cmt)}\)
\(\Rightarrow\text{BK là đường phân giác của}\widehat{KBC}\)
\(\text{Mà BE cũng là đường phân giác của}\widehat{BAH}\)
\(\Rightarrow\text{BE trùng BK hay ba điểm B ; E ; K thẳng hàng}\)
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
c: BA=BH
EA=EH
=>BE là trung trực của AH
d: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
a: goc C=90-60=30 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
a: Xét ΔBAE và ΔBHE có
BE chung
góc ABE=góc HBE
BA=BH
=>ΔBAE=ΔBHE
=>góc BHE=90 độ
=>HE vuông góc BC
b: BA=BH
EA=EH
=>BE là trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EK
góc AEK=góc HEC
=>ΔEAK=ΔEHC
d: AE=EH
mà EH<EC
nên AE<EC