K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE  và ΔBHE có

BE chung

góc ABE=góc HBE

BA=BH

=>ΔBAE=ΔBHE

=>góc BHE=90 độ

=>HE vuông góc BC

b: BA=BH

EA=EH

=>BE là trung trực của AH

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EK

góc AEK=góc HEC

=>ΔEAK=ΔEHC

d: AE=EH

mà EH<EC

nên AE<EC

29 tháng 8 2023

câu a là trứng minh tam giac abe và hbe nhé

 

 

\

 

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

Do đó; ΔBAE=ΔBHE

b: ΔBAE=ΔBHE

=>EA=EH

=>ΔEAH cân tại E

c: BA=BH

EA=EH

=>BE là trung trực của AH

d: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

Do đó: E là trực tâm

=>BE vuông góc KC

6 tháng 3 2022

HÌnh bạn tự vẽ nha

\(\text{a)Vì }BE\text{ là phân giác của }\Delta ABC:\)

\(\Rightarrow\widehat{ABE}=\widehat{EBH}\)

\(\text{Xét }\Delta ABE\text{ và }\Delta HBE\text{ có:}\)

\(BH=HA\left(gt\right)\)

\(BE\text{ chung}\)

\(\widehat{ABE}=\widehat{EBH}\left(cmt\right)\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)

\(\Rightarrow\widehat{BAE}=\widehat{BHE}\text{(hai cạnh tương ứng)}\)

\(\text{Mà }\widehat{A}=90^0\left(gt\right)\)

\(\Rightarrow\widehat{H}=90^0\)

\(\Rightarrow EH\perp BC\)

\(\text{b)Vì }\Delta ABE=\Delta HBE\left(cmt\right)\)

\(\Rightarrow AE=EH\)

\(\Rightarrow\text{Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A (1)}\)

\(\text{Ta có:}BA=BH\left(gt\right)\)

\(\Rightarrow\text{Khoảng cách từ điểm B đến H bằng khoảng cách từ điểm B đến A (2)}\)

\(\text{Từ (1) và (2)}\)

\(\Rightarrow\text{BE là đường trung trực của AH}\)

\(\text{c)Vì }\widehat{A}=90^0\left(gt\right)\)

\(\Rightarrow AB\perp AC\)

\(\Rightarrow\widehat{EAK}=90^0\)

\(\text{Vì }EH\perp BC\left(cmt\right)\)

\(\Rightarrow\widehat{EHC}=90^0\)

\(\text{Xét }\Delta AEK\text{ và }\Delta HEC\text{ có:}\)

\(\text{AE = EH (cmt)}\)

\(\widehat{EAK}=\widehat{EHC}=90^0\)

\(\widehat{AEK}=\widehat{HEC}\text{(đối đỉnh)}\)

\(\Rightarrow\Delta AEK=\Delta HEC\left(g-c-g\right)\)

\(\Rightarrow EK=EC\text{(2 cạnh tương ứng)}\)

\(\text{d)Ta có:}BA=BH\left(gt\right)\)

\(\Rightarrow\Delta\text{BAH cân tại B}\)

\(\Rightarrow\widehat{BAH}=\dfrac{180^0-\widehat{ABH}}{2}\left(3\right)\)

\(\text{Vì }\Delta AEK=\Delta HEC\left(cmt\right)\)

\(\Rightarrow\text{AK = HC ( 2 cạnh tương ứng)}\)

\(\text{Ta có:}\text{AK = BA + AK}\)

\(\text{BC = BH + HC}\)

\(\text{Mà BA = BH ( gt )}\)

\(\text{AK = HC ( cmt)}\)

\(\Rightarrow\text{BK = BC}\)

\(\Rightarrow\Delta\text{BKC cân tại B}\)

\(\Rightarrow\widehat{BKC}=\dfrac{180^0-\widehat{KBC}}{2}\left(4\right)\)

\(\text{Từ (3) và (4)}\)

\(\Rightarrow\widehat{BAH}=\widehat{BKC}\)

\(\text{Mà chúng đồng vị}\)

\(\Rightarrow\text{AH // BC}\)

 

\(\text{Ta có:}\Delta\text{BKC cân tại B}\)

\(\text{M là trung điểm BC }\)

\(\Rightarrow\text{BM là đường trung tuyến đồng thời là đường phân giác của }\Delta BKC\)

\(\text{Có BK là đường phân giác của tam giác BKC (cmt)}\)

\(\Rightarrow\text{BK là đường phân giác của}\widehat{KBC}\)

\(\text{Mà BE cũng là đường phân giác của}\widehat{BAH}\)

\(\Rightarrow\text{BE trùng BK hay ba điểm B ; E ; K thẳng hàng}\)

 

31 tháng 12 2023

 

e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ  ( 1 ) và ( 2 ) => B, D , M thằng hàng

 

 

28 tháng 10 2023

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

b: ΔBAE=ΔBHE

=>EA=EH

=>ΔEAH cân tại E

c: BA=BH

EA=EH

=>BE là trung trực của AH

d: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

=>E là trực tâm

=>BE vuông góc KC

28 tháng 6 2023

loading...

a: goc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

=>E là trực tâm

=>BE vuông góc KC

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC