K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AC>AB

nên góc B>góc C

b: Xét ΔABC có AB<AC

mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB<HC

c: góc B+góc C=90 độ

góc HAC+góc C=90 độ

=>góc B=góc HAC

góc C+góc B=90 độ

góc HAB+góc B=90 độ

=>góc C=góc HAB

9 tháng 7 2019

A B C D E H F

Tam giác ABC có : góc ABC > góc ACB (gt)

=> AC > AB (đl)

AD _|_ BC (gt) 

D thuộc BC

=> BD < DC

H thuộc AD 

=> HB < HC  

b, AD; BE là đường cao

ADcắt BE tại H 

=> CH là đường cao (đl)

=> CH _|_ AB (đn)

HF _|_ AB (gt)

=> C; H; F thẳng hàng

9 tháng 7 2019

c.

\(AB>AD;AC>AD\left(ch>cgv\right)\)

\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)

d

Kẻ \(HN//AC;HM//AB\)

Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)

Áp dụng bất đẳng thức tam giác ta có:

\(HA< AM+HM=AM+AN\left(1\right)\)

Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)

Xét  \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)

Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)

Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)

Tương tự,ta có:

\(HA+HB+HC< AB+BC\)

\(HA+HB+HC< BC+AC\)

\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)

\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)

31 tháng 3 2016

a) 4/5 . x = 4/7

⇒ x = 4/7 : 4/5 = 4/7 . 5/4 = 20/28 = 5/7

b) 3/4 : x = 1/2

⇒ x = 3/4 : 1/2 = 3/4 . 2/1 = 6/4 = 3/2

30 tháng 4 2016

Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).

a) Chứng minh: HB < AH < HC.

b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.

   Chứng minh: CI là tia phân giác của góc ACB.

c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).

   Chứng minh: ID + IC > KE+ DC.

Câu hỏi tương tự Đọc thêm
Toán lớp 7Hình học
              
 
1 tháng 5 2016

ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

Bạn tự vẽ hình nha!!!
a.

Ta có:

AB > AC (gt)

=> HB > HC (quan hệ giữa đường xiên và hình chiếu)

b.

Tam giác ABC có:

AB > AC (gt)

=> ACB > ABC (quan hệ giữa góc và cạnh đối diện trong tam giác)

c.

Tam giác ABH vuông tại H có: BAH + ABH = 90 => BAH = 90 - ABH

Tam giác ACH vuông tại H có: CAH + ACH = 90 => CAH = 90 - ACH

mà ACH > ABH (theo câu b)

=> BAH > CAH