Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H F
Tam giác ABC có : góc ABC > góc ACB (gt)
=> AC > AB (đl)
AD _|_ BC (gt)
D thuộc BC
=> BD < DC
H thuộc AD
=> HB < HC
b, AD; BE là đường cao
ADcắt BE tại H
=> CH là đường cao (đl)
=> CH _|_ AB (đn)
HF _|_ AB (gt)
=> C; H; F thẳng hàng
c.
\(AB>AD;AC>AD\left(ch>cgv\right)\)
\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)
d
Kẻ \(HN//AC;HM//AB\)
Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)
Áp dụng bất đẳng thức tam giác ta có:
\(HA< AM+HM=AM+AN\left(1\right)\)
Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)
Xét \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)
Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)
Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)
Tương tự,ta có:
\(HA+HB+HC< AB+BC\)
\(HA+HB+HC< BC+AC\)
\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)
\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)
Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: HB < AH < HC.
b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.
Chứng minh: CI là tia phân giác của góc ACB.
c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).
Chứng minh: ID + IC > KE+ DC.
Câu hỏi tương tự Đọc thêmBạn tự vẽ hình nha!!!
a.
Ta có:
AB > AC (gt)
=> HB > HC (quan hệ giữa đường xiên và hình chiếu)
b.
Tam giác ABC có:
AB > AC (gt)
=> ACB > ABC (quan hệ giữa góc và cạnh đối diện trong tam giác)
c.
Tam giác ABH vuông tại H có: BAH + ABH = 90 => BAH = 90 - ABH
Tam giác ACH vuông tại H có: CAH + ACH = 90 => CAH = 90 - ACH
mà ACH > ABH (theo câu b)
=> BAH > CAH
a: Xét ΔABC có AC>AB
nên góc B>góc C
b: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB<HC
c: góc B+góc C=90 độ
góc HAC+góc C=90 độ
=>góc B=góc HAC
góc C+góc B=90 độ
góc HAB+góc B=90 độ
=>góc C=góc HAB