K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

Bạn tham khảo bài làm của bạn Nguyễn Võ Thảo vy phía dưới nhé

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath

Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>góc AED=góc AHD=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>góc MAC=góc MCA

=>góc MAC+góc AED=90 độ

=>AM vuông góc với DE

Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>góc AED=góc AHD=góc ABC

góc AED+góc MAC=90 độ

=>góc MAC+góc B=90 độ

=>góc MAC=góc C

=>90 độ-góc MAC=90 độ-góc C

=>góc MAB=góc MBA

Xét ΔMAC có góc MAC=góc C

nên ΔMAC cân tại M

=>MA=MC(1)

Xét ΔMAB có góc MAB=góc B

nên ΔMAB cân tại M

=>MA=MB(2)

Từ(1) và(2) suy raMB=MC

hay M là trung điểm của BC

15 tháng 10 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>AH=DE

b: AI vuông góc với DE tại I

=>\(\widehat{IEA}+\widehat{IAE}=90^0\)

=>\(\widehat{MAC}+\widehat{AED}=90^0\)

=>\(\widehat{MAC}+\widehat{AHD}=90^0\)

=>\(\widehat{MAC}+\widehat{B}=90^0\)

mà \(\widehat{MCA}+\widehat{B}=90^0\)

nên \(\widehat{MAC}=\widehat{MCA}\)

=>MA=MC

\(\widehat{MAB}+\widehat{MAC}=90^0\)

\(\widehat{MCA}+\widehat{B}=90^0\)

mà \(\widehat{MAC}=\widehat{MCA}\)

nên \(\widehat{MAB}=\widehat{MBA}\)

=>MA=MB

=>MB=MC

=>M là trung điểm của BC

Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>góc AED=góc AHD=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>góc MAC=góc MCA

=>góc MAC+góc AED=90 độ

=>AM vuông góc với DE

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K

13 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

=>DE=AH

=>\(DE^2=BH\cdot CH\)

b: Ta có: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>góc MAC=góc MCA

Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(DE=AH=\dfrac{AB\cdot AC}{CB}=4.8\left(cm\right)\)