Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>góc AED=góc AHD=góc ABC
góc AED+góc MAC=90 độ
=>góc MAC+góc B=90 độ
=>góc MAC=góc C
=>90 độ-góc MAC=90 độ-góc C
=>góc MAB=góc MBA
Xét ΔMAC có góc MAC=góc C
nên ΔMAC cân tại M
=>MA=MC(1)
Xét ΔMAB có góc MAB=góc B
nên ΔMAB cân tại M
=>MA=MB(2)
Từ(1) và(2) suy raMB=MC
hay M là trung điểm của BC
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>AH=DE
b: AI vuông góc với DE tại I
=>\(\widehat{IEA}+\widehat{IAE}=90^0\)
=>\(\widehat{MAC}+\widehat{AED}=90^0\)
=>\(\widehat{MAC}+\widehat{AHD}=90^0\)
=>\(\widehat{MAC}+\widehat{B}=90^0\)
mà \(\widehat{MCA}+\widehat{B}=90^0\)
nên \(\widehat{MAC}=\widehat{MCA}\)
=>MA=MC
\(\widehat{MAB}+\widehat{MAC}=90^0\)
\(\widehat{MCA}+\widehat{B}=90^0\)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MAB}=\widehat{MBA}\)
=>MA=MB
=>MB=MC
=>M là trung điểm của BC
Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(DE^2=BH\cdot CH\)
b: Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC
=>góc AED+góc MAC=90 độ
=>AM vuông góc với DE
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(DE=AH=\dfrac{AB\cdot AC}{CB}=4.8\left(cm\right)\)
Bạn tham khảo bài làm của bạn Nguyễn Võ Thảo vy phía dưới nhé
Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath