Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
B A C D H H
a,Xét ΔBAH và ΔBCA,có:
\(\widehat{B}\) : góc chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
⇒ ΔBAH ∼ ΔBCA (1) (gg)
⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
⇒ \(AB^2=BH.BC\)
C/m tương tự:
\(\Delta ACH\sim\Delta BCA\left(gg\right)\left(2\right)\)
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CH}{AC}\Rightarrow AC^2=CH.BC\)
Từ(1)(2) ⇒ ΔBAH ∼ ΔACH
⇒ \(\dfrac{BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH.CH\)
b,Vì AD là phân giác của ΔBAC
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}=\dfrac{1}{2}\)
ΔBAH ∼ ΔACH
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)
hay \(\dfrac{1}{2}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)
\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{1}{2}AH\\CH=2AH\end{matrix}\right.\Rightarrow\dfrac{HB}{HC}=\dfrac{\dfrac{1}{2}AH}{2AH}=\dfrac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
sử dụng đồng dạng và các câu sau có thể dựa vào các câu trc thay vào và chứng minh nha
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H 1 2
a) Xét tam giác ABC và tam giác HBA có:
\(\hept{\begin{cases}\widehat{B}chung\\\widehat{BAC}=\widehat{BHA}=90^0\end{cases}\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)}\)(3)
b) Vì tam giác BHA vuông tại H(gt) nên \(\widehat{B}+\widehat{A1}=90^0\)( 2 góc bù nhau ) (1)
Ta có: \(\widehat{A1}+\widehat{A2}=\widehat{BAC}=90^0\)(2)
(1),(2)\(\Rightarrow\widehat{B}=\widehat{A2}\)
Xét tam giác HBA và tam giác HAC có:
\(\hept{\begin{cases}\widehat{B}=\widehat{A2}\\\widehat{BHA}=\widehat{AHC}=90^0\end{cases}\Rightarrow\Delta HBA~\Delta HAC\left(g.g\right)}\)(4)
\(\Rightarrow\frac{AH}{BH}=\frac{CH}{AH}\)( các đoạn tương ứng tỉ lệ )
\(\Rightarrow AH^2=BH.CH\)(5)
c) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\)(cm)
Từ (3) \(\Rightarrow\frac{AC}{BC}=\frac{AH}{AB}\)( các đoạn tương ứng tỉ lệ )
\(\Rightarrow\frac{8}{10}=\frac{AH}{6}\)
\(\Rightarrow AH=4,8\)(cm)
Từ (4) \(\Rightarrow\frac{HB}{AB}=\frac{HA}{AC}\)
\(\Rightarrow\frac{HB}{6}=\frac{4,8}{8}\)
\(\Rightarrow HB=3,6\)(cm)
Từ (5) \(\Rightarrow HC=6,4\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{ABC}\)chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\Rightarrow\Delta HBA~\Delta ABC\left(g.g\right)\)
b.AD ĐL Pitago vào \(\Delta ABC\) vuông tại A có:
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=144+256=400\)
\(BC=\sqrt{400}=20\left(cm\right)\)
Vì \(\Delta HBA~\Delta ABC\)
\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\)
\(\Rightarrow\frac{AH}{12}=\frac{16}{20}\Rightarrow AH=\frac{12.16}{20}=9,6\left(cm\right)\)
a, Xét tam giác AHB và tam giác CAB có
^B _ chung
^AHB = ^CAB = 900
Vậy tam giác AHB ~ tam giác CAB (g.g)
\(\dfrac{HB}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=HB.BC=HB\left(HB+HC\right)=225\Rightarrow AB=15cm\)
-> HB + HC = 25 cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-HB^2}=12cm\)
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=20cm\)
b, Xét tam giác AHB và tam giác CHA có
^AHB = ^CHA = 900
^HAB = ^HCA ( cùng phụ ^HAC )
Vậy tam giác AHB ~ tam giác CHA (g.g)
\(\dfrac{AH}{CH}=\dfrac{HB}{HA}\Rightarrow AH^2=HB.HC\)
AB^2 = BH . BC (cma)