: Cho tam giac sABC vuông tại A, đường cao AH.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

a, Xét tam giác AHB và tam giác CAB có 

^B _ chung 

^AHB = ^CAB = 900

Vậy tam giác AHB ~ tam giác CAB (g.g) 

\(\dfrac{HB}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=HB.BC=HB\left(HB+HC\right)=225\Rightarrow AB=15cm\)

-> HB + HC = 25 cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-HB^2}=12cm\)

Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=20cm\)

b, Xét tam giác AHB và tam giác CHA có 

^AHB = ^CHA = 900

^HAB = ^HCA ( cùng phụ ^HAC ) 

Vậy tam giác AHB ~ tam giác CHA (g.g) 

\(\dfrac{AH}{CH}=\dfrac{HB}{HA}\Rightarrow AH^2=HB.HC\)

AB^2 = BH . BC (cma) 

22 tháng 3 2018

Bài 1:

B A C D H H

a,Xét ΔBAH và ΔBCA,có:

\(\widehat{B}\) : góc chung

\(\widehat{BHA}=\widehat{BAC}=90^0\)

⇒ ΔBAH ∼ ΔBCA (1) (gg)

\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

\(AB^2=BH.BC\)

C/m tương tự:

\(\Delta ACH\sim\Delta BCA\left(gg\right)\left(2\right)\)

\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CH}{AC}\Rightarrow AC^2=CH.BC\)

Từ(1)(2) ⇒ ΔBAH ∼ ΔACH

\(\dfrac{BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH.CH\)

b,Vì AD là phân giác của ΔBAC

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}=\dfrac{1}{2}\)

ΔBAH ∼ ΔACH

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)

hay \(\dfrac{1}{2}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)

\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{1}{2}AH\\CH=2AH\end{matrix}\right.\Rightarrow\dfrac{HB}{HC}=\dfrac{\dfrac{1}{2}AH}{2AH}=\dfrac{1}{4}\)

22 tháng 3 2018

AD là phân giác góc A nha

sử dụng đồng dạng và các câu sau có thể dựa vào các câu trc thay vào và chứng minh nha

29 tháng 5 2020

A B C H 1 2

a) Xét tam giác ABC và tam giác HBA có:

\(\hept{\begin{cases}\widehat{B}chung\\\widehat{BAC}=\widehat{BHA}=90^0\end{cases}\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)}\)(3)

b) Vì tam giác BHA  vuông tại H(gt) nên \(\widehat{B}+\widehat{A1}=90^0\)( 2 góc bù nhau ) (1)

Ta có: \(\widehat{A1}+\widehat{A2}=\widehat{BAC}=90^0\)(2)

(1),(2)\(\Rightarrow\widehat{B}=\widehat{A2}\)

Xét tam giác HBA và tam giác HAC có:

\(\hept{\begin{cases}\widehat{B}=\widehat{A2}\\\widehat{BHA}=\widehat{AHC}=90^0\end{cases}\Rightarrow\Delta HBA~\Delta HAC\left(g.g\right)}\)(4)

\(\Rightarrow\frac{AH}{BH}=\frac{CH}{AH}\)( các đoạn tương ứng tỉ lệ )

\(\Rightarrow AH^2=BH.CH\)(5)

c)  Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\)(cm)

Từ (3) \(\Rightarrow\frac{AC}{BC}=\frac{AH}{AB}\)( các đoạn tương ứng tỉ lệ )

\(\Rightarrow\frac{8}{10}=\frac{AH}{6}\)

\(\Rightarrow AH=4,8\)(cm)

Từ (4) \(\Rightarrow\frac{HB}{AB}=\frac{HA}{AC}\)

\(\Rightarrow\frac{HB}{6}=\frac{4,8}{8}\)

\(\Rightarrow HB=3,6\)(cm)

Từ (5) \(\Rightarrow HC=6,4\left(cm\right)\)

29 tháng 5 2020

phần d viết lại cậu ơi

22 tháng 5 2021

Xét \(\Delta HBA\) và \(\Delta ABC\) có:

        \(\widehat{ABC}\)chung

 \(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\Rightarrow\Delta HBA~\Delta ABC\left(g.g\right)\)

b.AD ĐL Pitago vào \(\Delta ABC\) vuông tại A có:

\(BC^2=AB^2+AC^2\)

\(BC^2=12^2+16^2\)

\(BC^2=144+256=400\)

\(BC=\sqrt{400}=20\left(cm\right)\)

Vì \(\Delta HBA~\Delta ABC\)

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\)

\(\Rightarrow\frac{AH}{12}=\frac{16}{20}\Rightarrow AH=\frac{12.16}{20}=9,6\left(cm\right)\)