K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2022

a) ta có OM = ON (gt) 
=> OMN cân tại O 
b) vì OMN cân tại O mà góc MON = 60 độ 
-> góc OMN=góc ONM  = (180 - 60 ) : 2 = 60 độ 
=> tan giác OMN đều 
 

16 tháng 5 2022

xét Tam giác OHM và tam giác OHN  
có OM = ON (gt) 
     góc ONH = góc OMH (OMN là tam giác cân) 
     góc ONH = góc OMH (H là đường cao ) 
=> tam giác OHM = tam giác OHN ( g-c-g) 
=> HM = HN ( 2 cạnh tương ứng ) 

2 tháng 7 2017

tui bít rùi nè

a) tam giác AOB= tam giác FOE(c-g-c)\(\Rightarrow\)AB=EF và\(\widehat{A}=\widehat{F}\)

Xét tam giác FOE vuông tại O có\(\widehat{E}+\widehat{F}\)=900 \(\Rightarrow\widehat{E}+\widehat{A}=90^0\)\(\Rightarrow\widehat{H}=90^0\)\(\Rightarrow\)AB vuông góc vs EF

b) M là trung điểm của AB \(\Rightarrow\)BM=1/2 AB; N là trung điểm của EF\(\Rightarrow\)EN =1/2EF mà AB =EF(cmt) nên BM=EN\(\left(1\right)\).  Lại có

\(\widehat{E}=\widehat{B_1}\)\(\Rightarrow\)tam giác BOM =tam giác EON (c-g-c)\(\Rightarrow\)OM=ON và\(\widehat{O_1}=\widehat{O_2}.\)Ta có\(\widehat{O_2}+\widehat{O_3}=90^0\Rightarrow\widehat{O_1}+\widehat{O_3}=90^0\)

\(\widehat{MON=90^0\left(2\right)}\).Từ\(\left(1\right)\)\(\left(2\right)\Rightarrow\)Tam giác MON vuông cân

21 tháng 11 2017

a) tam giác AOB= tam giác FOE(c-g-c)⇒AB=EF và = Xét tam giác FOE vuông tại O có + =90 0 ⇒ + = 90 0 ⇒ = 90 0 ⇒AB vuông góc vs EF b) M là trung điểm của AB ⇒BM=1/2 AB; N là trung điểm của EF⇒EN =1/2EF mà AB =EF(cmt) nên BM=EN 1 . Lại có = ⇒tam giác BOM =tam giác EON (c-g-c)⇒OM=ON và = . Ta có + = 90 0 ⇒ + = 90 0 .Từ 1 và 2 ⇒Tam giác MON vuông cân ^A ^F ^E ^F ^E ^A ^H (2 ) ^E ^B 1 ^O 1 ^O 2 ^O 2 ^O 3 ^O 1 ^O 3 ^ MON = 90 0

4 tháng 2 2016

minh moi hok lop 6

a: Xét tứ giác AMCD có

N là trung điểm của AC

N là trung điểm của MD

Do đó:AMCD là hình bình hành

Suy ra: CD//AM và CD=AM

=>CD//MB và CD=MB

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=1/2BC

28 tháng 3 2021

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)vv

5 tháng 4 2021

câu a phải làm như này chứ

A. Xét tam giác NMA và tam giác NPB có:

NM=NP ( tam giác NMP cân)

MA=PB (gt) 

Góc M= góc P (tam giác NMP cân )

=> tam giác NMA= tam giác NPB( c.g.c)

=> NA=NB( hai cạnh t.ứng)

=> tam giác NAB cân

 

 

a: Xét ΔOKA và ΔOKB có 

OA=OB

\(\widehat{AOK}=\widehat{BOK}\)

OK chung

Do đó: ΔOKA=ΔOKB