Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tg OBC và tg ODA
góc O chung
OB= OD ( giả thiết) (*)
OC= OA (giả thiết)
=> tg OBC= tg ODA ( C-G-C)
Suy ra : AD= BC (1)
góc ABE= góc EDC (2)
góc OCB= góc OAD (3)
b) Xét tg EAB và tg ECD: góc ABE= góc EDC ( do 2) (4)
góc BAE= góc ECD [kề bù với 2 góc OCB và OAD do (3) ] (5)
Mặt khác: A nằm giữa O, B ( OA<OB) => AB= OB - OA
C nằm giữa O, D ( OC<OD) => CD= OD - OC
Mà do (*) => AB= CD (6)
Từ (4), (5) và (6) suy ra: tg AEB= tg CED (G-C-G)
c) tg AEB= tg CED => AE= CE
mà OA= OC
OE chung của 2 tam giác
Suy ra tg OAE= tg OCE (C-C-C) (**) => góc AOE = góc COA
Do AD cắt BC(giả thiết) tại E nằm trong góc xOy => Tia OE nằm giữa 2 tia OB, OD (***)
Từ (**) và (***) suy ra: OE là tia phân giác của góc xOy.
Hết. Chúc bạn học tốt

a) Đầu tiên bạn xét tam giác OBD và tam giác OCA = nhau theo trường hợp c.g.c xog suy ra 2 cạnh tương ứng
b) chứng minh AB=DC theo cách cộng đoạn thẳng
chứng minh góc BAE = góc EDC theo cách tổng 3 góc trong 1 tam giác (đầu tiên đưa ra tam giác OBD và tam giác OCA = nhau theo chứng minh trên từ đó suy ra góc B= góc C, sau đó có góc AEB= góc DEC vì đối đỉnh, mà cộng tổng 3 góc trong 1 tam giác luôn =180 độ nên góc BAE = góc EDC)
từ đó xét tam giác ABE=tam giác DCE theo trường hợp g.c.g
OC ở đâu vậy bạn? Đề hình như sai rồi
mik sửa oy