Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tứ giác BDCO có:
M là trung điểm BC (gt)
D là điểm đối xứng của O qua M (D thuộc tia đối MO; MO=MD)
=> tứ giác BDCO là hình bình hành (vì có 2 đường chéo cắt nhau tại giao điểm)
=> OB=DC và OB//CD (tính chất hình bình hành)
b) xét tam giác COM có: OM=MC (do OD và BC cắt nhau tại giao điểm)
=> tam giác COM là tam giác cân tại M
xét tam giác cân COM cân tại M có E là trung điểm của OC
=> ME là đường trung tuyến của tam giác cân COM
mà trong tam giác cân đường trung tuyến trùng với đường cao
=> ME là đường cao của tam giác COM => ME _|_ OC
Mà E là trung điểm OC => ME là đường trung trực của đường thẳng OC
xét tứ giác OMCK có: ME là đường trung trực của OC
=> tứ giác OMCK là hình thoi
=> CK//OM và OK//MC (tính chất hình thoi)
c) Ở trên câu b) chứng minh rồi
bạn tự vẽ hình nhé:
xét tam giác AOB có: AB<AO+OB
Do A thuộc tia đối của tia 0C
=>A,O,C thẳng hàng .gọi đây là 1
tg OBC cân tại O.=>OB=OC gọi đây là 2
từ 1 và 2 =>AO+OB=AO+OC=AC
hay AB<AC(dpcm)
a: Sửa đề: Chứng minh ΔOCD=ΔOAB
Xét ΔOCD và ΔOAB có
OC=OA
\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)
OD=OB
Do đó: ΔOCD=ΔOAB
b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có
BO=DO
\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)
Do đó: ΔBHO=ΔDKO
=>BH=DK
c: ta có;ΔOBA=ΔODC
=>\(\widehat{OBA}=\widehat{ODC}\)
Xét ΔMBO và ΔNDO có
MB=ND
\(\widehat{MBO}=\widehat{NDO}\)
BO=DO
Do đó: ΔMBO=ΔNDO
=>\(\widehat{MOB}=\widehat{NOD}\)
mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)
nên \(\widehat{NOD}+\widehat{MOD}=180^0\)
=>\(\widehat{MON}=180^0\)
=>M,O,N thẳng hàng
a: Sửa đề: Chứng minh ΔOCD=ΔOAB
Xét ΔOCD và ΔOAB có
OC=OA
\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)
OD=OB
Do đó: ΔOCD=ΔOAB
b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có
BO=DO
\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)
Do đó: ΔBHO=ΔDKO
=>BH=DK
c: ta có;ΔOBA=ΔODC
=>\(\widehat{OBA}=\widehat{ODC}\)
Xét ΔMBO và ΔNDO có
MB=ND
\(\widehat{MBO}=\widehat{NDO}\)
BO=DO
Do đó: ΔMBO=ΔNDO
=>\(\widehat{MOB}=\widehat{NOD}\)
mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)
nên \(\widehat{NOD}+\widehat{MOD}=180^0\)
=>\(\widehat{MON}=180^0\)
=>M,O,N thẳng hàng
a) Xét tam giác tam giác ABO và tam giác CDO có:
+ OB = OD (gt).
+ OA = OC (gt).
+ ^AOB = ^COD (2 góc đối đỉnh).
=> Tam giác ABO = Tam giác CDO (c - g - c).
b) Xét tứ giác ABCD có:
+ O là trung điểm của AC (do OA = OC).
+ O là trung điểm của BD (do OB = OD).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ O là trung điểm của AC (do OA = OC).
=> MO là đường trung bình.
=> MO // BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác BDC có:
+ N là trung điểm của CD (gt).
+ O là trung điểm của BD (do OB = OD).
=> NO là đường trung bình.
=> NO // BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) => 3 điểm M; O; N thẳng hàng (đpcm).
Lời giải:
Xét tam giác $OBD$, áp dụng BĐT tam giác thì:
$DB< OB+OD$
Mà $OB=OC$ nên: $OB+OD=OC+OD=CD$
$\Rightarrow DB< CD$ (đpcm)
Hình vẽ: