Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a: Xét ΔBOD và ΔAOE có
OB/OA=OD/OE
góc BOD=góc AOE
=>ΔBOD đồng dạng với ΔAOE
b: ΔBOD đồng dạng với ΔAOE
=>góc BDO=góc AEO
=>góc CEB=góc CDA
mà góc C chung
nên ΔCEB đồng dạng với ΔCDA
a: Ta có: AD=DE=EC
=>D là trung điểm của AE và E là trung điểm của DC
Xét ΔBDC có
M,E lần lượt là trung điểm của CB,CD
=>ME là đường trung bình của ΔBDC
=>ME//BD
b: Ta có: ME//BD
I\(\in\)BD
Do đó: ID//ME
Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
=>AI=IM
a: Xét ΔAOE và ΔBOD có
\(\dfrac{OA}{OB}=\dfrac{OE}{OD}\left(\dfrac{36}{18}=\dfrac{18}{9}\right)\)
\(\widehat{AOE}=\widehat{BOD}\)(hai góc đối đỉnh)
Do đó: ΔAOE đồng dạng với ΔBOD
b: Ta có: ΔAOE~ΔBOD
=>\(\widehat{EAO}=\widehat{DBO}\)
Xét ΔCAD và ΔCBE có
\(\widehat{CAD}=\widehat{CBE}\)
\(\widehat{C}\) chung
Do đó: ΔCAD~ΔCBE