Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMIP và ΔKIN có
IM=IK
\(\widehat{MIP}=\widehat{KIN}\)
IP=IN
Do đó: ΔMIP=ΔKIN
c: Xét ΔMEK có
H là trung điểm của ME
I là trung điểm của MK
Do đó: HI là đường trung bình
=>HI//EK và HI=EK/2
Xét ΔMPE có
PH là đường cao
PH là đường trung tuyến
Do đó: ΔMPE cân tại P
Suy ra: PM=PE(1)
Xét tứ giác MNKP có
I là trung điểm của MK
I là trung điểm của NP
Do đó: MNKP là hình bình hành
Suy ra: NK=MP(2)
Từ (1) và (2) suy ra NK=PE
a: Xét ΔIQM và ΔINK có
IQ=IN
góc QIM=góc NIK
IM=IK
=>ΔIQM=ΔINK
b: ΔIQM=ΔINK
=>góc IQM=góc INK
=>QM//NK
c: Xét tứ giác MNKQ có
I là trung điểm chung của MK và NQ
góc QMN=90 độ
Do đó: MNKQ là hình chữ nhật
=>MK=QN
a) Xét △MIQ và △NIP ta có:
IM=IN (gt)
∠MIQ=∠NIP(2 góc đối đỉnh)
MQ=MP (gt)
Vậy : △MIQ = △NIP (c.g.c)
Vậy: QM = NP (2 cạnh tương ứng)
⇒ ∠MQI = ∠IPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
Vậy : QM // NP
b) Xét △MEK và △PEN ta có:
EM = EP (gt)
∠MEK =∠PEN (2 góc đối đỉnh)
EK = EN (gt)
⇒ △MEK = △PEN (c.g.c)
⇒ ∠EMK = ∠EPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
Vậy: MK//PN
c) Từ câu a và câu b, ta có : QM//NP và MK//PN
Vậy M,Q,K thẳng hàng.(1)
Ta có:△MEK=△PEN (theo câu b)
⇒ MK=NP (2 cạnh tương ứng)
⇒ QM=NP (theo câu a) và MK=NP(chứng minh trên)⇒QM=MK (2)
Từ (1) và (2), suy ra: M là trung điểm của đoạn thẳng QK.
Mình ko biết là A trog câu c) ở đâu nên mình đổi thành Q nha!
a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)
b) xét tam giác MNI và MPI có
MI chung
MN=MP(GT)
IN=IP(MI là trung tuyến nên I là trung điểm NP)
SUY ra tam giác MNI=MPI(C-C-C)
c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)
d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I
Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP
Mà NP=12cm(gt) suy ra NI=12x1/2=6cm
xét tam giác vuông MNI có
NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)
Suy ra MI2=NM2-NI2
mà NM=10CM(gt) NI=6CM(cmt)
suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8
mà MI>0 Suy ra MI=8CM (đpcm)
ế) mik gửi cho bn bằng này nhé
a) Vì MN=MP => tam giác MNP là tam giác cân tại M.
b)Xét tam giác MIN và tam giác MIP có:
MN=MP (vì tam giác MNP cân)
\(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)
NI=PI(vì MI là trung tuyến)
=> tam giác MIN=tam giác MIP(c.g.c)
c) Ta có: MN=MP
IN=IP
=> M,I thuộc trung trực của NP
Hay MI là đường trung trực của NP
d) IN=IP=NP/2=12/2=6(cm)
Xét tam giác MIN có góc MIN =90*
=> MN^2=MI^2 + NI^2
=> MI^2=MN^2-NI^2
=> MN^2 = 10^2 - 6^2
=> MN = 8
e) Tam giác HEI có goc IHE=90*
=> góc HEI + góc HIE= 90*
Mà góc HIE = góc MEF/2
=> góc MEF/2 + góc HEI = 90* (1)
Mà góc MEF + góc HEI + góc IEF = 180*
=> góc MEF/2 + góc IEF = 90* (2)
Từ (1) và (2) => góc HEI = góc IEF
Hay EI là tia phân giác của góc HEF
a) Xét 2 \(\Delta MNQ\)và \(\Delta PKQ\) có:
\(\hept{\begin{cases}KQ=QN\left(gt\right)\\PQ=QM\left(gt\right)\\\widehat{KQP}=\widehat{NQM\left(đ^2\right)}\end{cases}}\)
\(\Rightarrow\Delta MNQ=\Delta PKQ\left(c.g.c\right)\left(ĐPCM\right)\)
b) theo a, ta có : \(\Delta MNQ=\Delta PKQ\)
\(\Rightarrow\widehat{QPK}=\widehat{QMN}\)( 2 góc tương ứng )
Mà 2 góc này nằm ở vị trí so le trong của MN và PK :
\(\Rightarrow MN//PK\left(DHNB\right)\left(ĐPCM\right)\)