Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác MNP vuông tại M có MN=4cm;MP=3cm
a)tính đọ dài NP và so sánh các góc của tam giác MNP
b)Trên tia đối tia PM lấy A sao cho P là trung điểm của đoạn thẳng AM.QUa P dựng đường thẳng vuông góc với AM cắt AN tại C.C/m tam giác CPM=tam giác CPA
c)C/m CM=CN
d)GỌi G là giao điểm của MC và NP.TÍnh NG
e)Từ A vẽ đường thẳng vuông góc với NP tại D.Vẽ tia Nx là tia phân giác của góc MNP,vẽ tia Ay là tian pg của PAD,tia Ay cắt các tia NP,Nx,NM lần lượt tại E,H,K.C/m tam giác NEK cân
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)
\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)
\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)
\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)
b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)
△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)
c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\); \(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)
\(\Rightarrow\)△MDK cân tại M
a, xét tam giá HNM và tam giác MNP có chung :
góc MNP
cạnh MN
cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP
=> tam giác HNM đồng dạng MNP (c-g-c)
b,
áp dụng đ/l pytago vào tam giác vuông MNP :
=>NP=15cm
MH.NP =NM.MP
MH.15=9.12
=>MH=7,2cm
áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):
=>NH=5,4cm
HP=NP-NH
HP=15-5,4=9,6cm
c,
vì MI là phân giác của góc M
=> MI là trung tuyến của tam giác MNP nên:
NI=IP
mà NI+IP=15cm
=> NI=IP =7,5cm
a) Xét tam giác NMP và tam giác MHP
có \(\widehat{NMP}=\widehat{MHP}\)(=90 độ )
\(\widehat{NPM}\) chung
Vậy tam giác NMP đồng dạng với tam giác MHP (g.g)
b) từ hai tam giác đồng dạng ở câu a suy ra \(\frac{NM}{MH}=\frac{NP}{MP}\)(1)
MH =\(\frac{MP\times MN}{NP}\)
tự tính nha bạn
c) Ta có tam giác NMP đồng dạng với tam giác NHM (g.g)
vì có \(\widehat{N}\) chung và \(\widehat{MHN}=\widehat{NMP}\)
suy ra \(\frac{MN}{MP}=\frac{NH}{HM}\)(2)
Từ (1) và (2) suy ra \(\frac{NH}{HM}=\frac{MH}{HP}\) rồi suy ra được điều phải chứng minh
a) Xét ΔMBP vuông tại B và ΔMAN vuông tại A có
\(\widehat{BMP}\) chung
Do đó: ΔMBP\(\sim\)ΔMAN(g-g)
Suy ra: \(\dfrac{MB}{MA}=\dfrac{MP}{MN}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MB\cdot MN=MA\cdot MP\)
b) Xét ΔMNP có
NA là đường cao ứng với cạnh MP(gt)
PB là đường cao ứng với cạnh MN(gt)
NA cắt PB tại H(gt)
Do đó: H là trực tâm của ΔMNP(Tính chất ba đường cao của tam giác)
Suy ra: MH\(\perp\)NP tại C