Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A A A B B B C C C D D D M M M E E E
a/ Ta có MD là đường tb tam giác BAC nên ME//AC(1)
Mà vì \(\Delta AEM=\Delta BDM\left(c.g.c\right)\Rightarrow\widehat{AEM}=\widehat{BDM}\Rightarrow\)AE//BC(2)
Từ (1) và (2) suy ra ngay ĐPCM
b/ Từ giả thiết là D,E và A,B đối xứng với nhau qua điểm M suy ra AEBD là hbh
Từ đó để AEBD là hình chữ nhật thì MD phải vuông góc với BC Từ đó suy ra tam giác ACB phải vuông ở C
A B C H M I K G E
a) Giao điểm của AH và BC là E. Dễ thấy: \(\Delta\)BHM = \(\Delta\)CKM (c.g.c) => ^HBM = ^KCM
=> ^HBC = ^KCB. Do H đối xứng với I qua BC => ^HBC = ^IBC => ^KCB = ^IBC (1)
Xét \(\Delta\)HIK: E là trung điểm IH; M là trung điểm của HK => EK là đường trung bình \(\Delta\)HIK
=> EM // IK hay IK // BC => Tứ giác BIKC là hình thang (2)
Từ (1) & (2) => Tứ giác BIKC là hình thang cân (đpcm).
b) Dễ c/m tứ giác BHCK là hình bình hành (Do có tâm đối xứng) => HC // BK
Hay HC // GK => Tứ giác GHCK là hình thang
Để tứ giác GHCK là hình thang cân thì ^GHC = ^KCH
<=> ^HAC + ^HCA = ^HCB + ^HBC <=> ^HCA = ^HCB ( Vì ^HAC = ^HBC, cùng phụ ^ACB)
<=> CH là phân giác ^ACB. Mà CH cũng là đường cao của \(\Delta\)ABC => \(\Delta\)ABC cân tại C
Vậy khi \(\Delta\)ABC cân tại C thì tứ giác GHCK là hình thang cân.
A B C H H G K
Xét tứ giác EHFK có hai đường chéo EF HK cắt nhau tại G
G là trung điểm EF, G là trung điểm HK
=> Tứ giác EHFK là hình bình hành
H A B C G K
Bài làm
a) Xét tứ giác EHFK có đường chép EF và HK cắt nhau tại G
Ta có: G là trung điểm của EF
G là trung điểm của HK
=> Tứ giác EFHK là hình bình hành ( đpcm )
# Chúc bạn học tốt #