K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

goi giao MF voi ABla H , giao ME voi AC la K, MD voi BC la I

Do tam giac ABC noi tiep (O) ma M thuoc (o) nen ABMC noi tiep

xet tam giac MDF co \(\hept{\begin{cases}H.la.trung.diem.MF\\I.la.trung.diem.DM\end{cases}\Rightarrow HI//DF}\) (1)

tuong tu cung co \(IK//ED\) va  \(HK//EF\) ( do tinh chat duong trung binh)          (2)

Xet tu giac HBIM co \(\widehat{BHM}+\widehat{BIM}=90+90=180^o\)

=> HBIM la tu giac noi tiep => \(\widehat{HIB}=\widehat{BMH}\)  (cung chan \(\widebat{BH}\) )   (4)

tuong tu cung chung minh duoc tu giac MIKC la tu giac noi tiep => \(\widehat{KIC}=\widehat{KMC}\left(cung.chan.\widebat{KC}\right)\)(3)

Lai co \(\widehat{HBM}=\widehat{MAH}+\widehat{AMB}\) (tinh chat goc ngoai)

va \(\widehat{MCK}=\widehat{MCB}+\widehat{ACB}\) 

ma ABMC noi tiep suy ra \(\hept{\begin{cases}\widehat{AMB}=\widehat{ACB}\\\widehat{MAB}=\widehat{MCB}\end{cases}}\)

=> \(\widehat{MHB}=\widehat{MCK}\)

xet tam giac MHB va tam giac MKC co

\(\widehat{H}=\widehat{K}=90\)

\(\widehat{MHB}=\widehat{MCK}\) (cmt)

=> \(\widehat{HMB}=\widehat{KMC}\) (5)

tu (3),(4),(5)  =>\(\widehat{HIB}=\widehat{KIC}\)

=> H,I,K thang hang (6)

tu (1),(2),(6)

suy ra F,D,E thang hang ( tien de Oclit)

chuc ban hoc tot

20 tháng 10 2019

Cần gấp !!

28 tháng 5 2019

Kẻ AH ⊥ DE tại H

D A E ^ = 2 B A C ^

=>  D A H ^ = B A C ^

Từ DE=2DH; AD=AM=AE

Suy ra DH=AD.sin D A H ^

Từ đó  D E m a x <=> AM = 2R

23 tháng 5 2017

 

Vì DPN+DQN=90o+90o=180o nên DPNQ là tứ giác nội tiếp

=>QPN=QDN (hai góc nội tiếp cùng chắn cung QN) (5)

Mặt khác DENF là tứ giác nội tiếp nên QDN=FEN  (6)

Từ (5) và (6) ta có FEN=QPN (7)

Tương tự ta có: EFN=PQN  (8)

Từ (7) và (8) suy ra  Δ N P Q ~ Δ N E F ( g . g ) = > P Q E F = N Q N F

Theo quan hệ đường vuông góc – đường xiên, ta có

N Q ≤ N F = > P Q E F = N Q N F ≤ 1 = > P Q ≤ E F

Dấu bằng xảy ra khi Q ≡ F NF DF D, O, N thẳng hàng.

Do đó PQ max khi M là giao điểm của AC và BN, với N là điểm đối xứng với D qua O.

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
NV
21 tháng 1 2021

Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)

Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)

D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp

\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)

Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp

\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)

\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng

NV
21 tháng 1 2021

Hình vẽ:

undefined