Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
a. Δ ABC có H là giao điểm của 2 đường cao AM và BN
⇒ H là trực tâm ΔABC
⇒ CH⊥AB
b. Δ AMC có ∠AMC=90
⇒ ∠MAC+∠ACM=90
⇒∠MAC+80=90
⇒∠MAC=10=∠HAN
Δ AHN có ∠HNA=90
⇒∠AHN+∠HAN=90
⇒∠AHN=90-∠HAN=90-10=80
c. Tứ giác HNCM có ∠HCN=∠HMC=90
⇒∠NHM+∠C=180
⇒∠NHM=180-∠C=180-80=100
Câu 2
VÌ Δ DEF cân tại D
Mà DI là đường trung tuyến
⇒ DI là đường trung trực
⇒ Δ DEI vuông tại I ; IE=1/2EF=6cm
Áp dụng định lý pytago vào ΔDEI có
DI²=DE²-EI²
⇒DI²=100-36
⇒DI²=64
⇒DI=8 ( vì DI>0)
Xét tam giác ABN và tam giác ACM có
\(\hept{\begin{cases}AB=AC\\AM=AN\left(\frac{1}{3}AB=\frac{1}{3}AC\right)\\\widehat{A}\text{ chung}\end{cases}}\Rightarrow\Delta ABN=\Delta ACM\left(\text{c.g.c}\right)\)
=> BN = CM (cạnh tương ứng)
=> \(\widehat{ABN}=\widehat{ACM}\)(cạnh tương ứng)
b) Vì \(\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC\text{ cân}\right)\\\widehat{ABN}=\widehat{ACM}\left(cmt\right)\end{cases}}\Rightarrow\widehat{ABC}-\widehat{ABN}=\widehat{ACB}-\widehat{ACM}\)
=> \(\widehat{NBC}=\widehat{MCB}\text{ hay }\widehat{HBC}=\widehat{HCB}\Rightarrow\Delta HBC\text{ cân tại H }\left(ĐPCM\right)\)
=> HB = HC
c) Qua H kẻ đường thẳng PQ // BC (Q \(\in AC;P\in AB\))
Vì PQ//BC
=> \(\hept{\begin{cases}\widehat{APQ}=\widehat{ABC}\left(\text{đồng vị}\right)\\\widehat{AQP}=\widehat{ACB}\left(\text{ đồng vị}\right)\end{cases}}\text{mà }\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{APQ}=\widehat{AQP}\)
=> Tam giác APQ cân tại A
=> AP = AQ
=> PB = QC
Xét tam giác PBH và tam giác QCH có :
\(\hept{\begin{cases}PB=QC\left(cmt\right)\\HB=HC\left(\text{câu b}\right)\\\widehat{PBH}=\widehat{QCH}\left(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\left(\text{câu a}\right)\right)\end{cases}\Rightarrow\Delta PBH}=\Delta QCH\left(c.g.c\right)\)
=> PH = QH (cạnh tương ứng)
Xét tam giác APH và tam giác AQH có :
\(\hept{\begin{cases}AP=AQ\\PH=QH\\AH\text{ chung}\end{cases}}\Rightarrow\Delta APH=\Delta AQH\left(c.c.c\right)\)
=> \(\widehat{AHP}=\widehat{AHQ}\left(\text{cạnh tương ứng}\right)\text{ mà }\widehat{AHP}+\widehat{AHQ}=180^{\text{o}}\Rightarrow\widehat{AHP}=\widehat{AHQ}=90^{\text{o}}\Rightarrow AH\perp PQ\)
Lại có PQ//BC
=> AH \(\perp\)BC (đpcm)
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
b: Ta có: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
c: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,F thẳng hàng
a) +Xét tam giác ABC cân tại A có \(\widehat{A}\)= 100o
=>\(\widehat{B}=\widehat{C}=40^o\)
TT ta có: Tam giác AMN cân(AM=AN) tại A có\(\widehat{A}\)=100o
=>\(\widehat{AMN}=\widehat{ANM}=40^o\)
=>\(\widehat{B}=\widehat{C}\)\(=\widehat{AMN}=\widehat{ANM}\)
=>\(\widehat{B}=\widehat{AMN}\)
Mà hai góc này đồng vị =>MN//BC
+Xét tam giác AMC và tam giác ANB có:
AM=AN
 chung
AC=AB
Do đó tam giác AMC= tam giác ANB(c.g.c)
Suy ra BN=CM(hai cạnh t.ứ)
Bài 2 để tí mik lm tiếp, mik đag bận, bạn tích mik để mik có cái để tl tiếp nhé
Chúc học tốt
Bài làm
a) Xét tam giác AMN có:
AM = AN
=> Tam giác AMN cân tại A.
b) Xét tam giác ABC cân tại A có:
\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét tam giác AMN cân tại A có:
\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{B}=\widehat{M}\)
Mà hai góc này ở vị trí đồng vị.
=> MN // BC
c) Xét tam giác ABN và tam giác ACM có:
AN = AM ( gt )
\(\widehat{A}\) chung
AB = AC ( Vì tam giác ABC cân )
=> Tam giác ABN = tam giác ACM ( c.g.c )
=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )
Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác BIC cân tại I
Vì MN // BC
=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )
\(\widehat{NMI}=\widehat{ICB}\)( so le trong )
Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )
=> \(\widehat{MNI}=\widehat{NMI}\)
=> Tam giác MIN cân tại I
d) Xét tam giác cân AMN có:
E là trung điểm của MN
=> AE là trung tuyến
=> AE là đường trung trực.
=> \(\widehat{AEN}=90^0\) (1)
Xét tam giác cân MNI có:
E là trung điểm MN
=> IE là đường trung tuyến
=> IE là trung trực.
=> \(\widehat{IEN}=90^0\) (2)
Cộng (1) và (2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng. (3)
Xét tam giác cân BIC có:
F là trung điểm BC
=> IF là trung tuyến
=> IF là trung trực.
=> \(\widehat{IFC}=90^0\)
Và MN // BC
Mà \(\widehat{IFC}=90^0\)
=> \(\widehat{IEN}=90^0\)
=> E,I,F thẳng hàng. (4)
Từ (3) và (4) => A,E,I,F thẳng hàng. ( đpcm )
# Học tốt #