Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) trong tam giac ABC vuong tai A co
+)BC2=AB2+AC2
suy ra AC=12cm
+)AH.BC=AB.AC
suy ra AH=7,2cm
b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm
suy ra MN=7,2cm
c) goi O la giao diem cu MN va AH
Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm
suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB
Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC
suy ra tam giac AKB can tai K
suy ra goc B= goc BAK
Ta co goc B+ goc BAH=90 do
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)
1 ,áp dụng bộ 3 pitago trong tam giác abc suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c
S tứ giác = SABC +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.
2,bài 2 vẽ hình lâu lém tự làm nha bn
3,
B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
a/
Áp dụng định lí Pitago vào ∆ABC vuông tại A ta được
•\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
•\(\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow\)B^\(\approx53^0\)
C^\(=90^0-53^0\approx37^0\)
b/
Vì AD là tia phân giác A^ nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\)
Mà \(DB=BC-DC=10-DC\)
Suy ra \(\dfrac{10-DC}{DC}=\dfrac{4}{6}\Rightarrow60-6.DC=4.DC\)
\(\Leftrightarrow10.DC=60\Leftrightarrow DC=6\left(cm\right)\)
Suy ra \(DB=10-6=4\left(cm\right)\)
Vẽ đường kính CM
\(MA\perp AC\)(\(\Delta MAC\)nội tiếp)
\(BE\perp AC\)(giả thiết)
\(\Rightarrow\)\(MA//BH\) (1)
\(MB\perp BC\)(\(\Delta MBC\)nội tiếp)
\(AH\perp BC\)(giả thiết)
\(\Rightarrow\)\(MB//AH\)(2)
Từ (1)(2):
\(\Rightarrow\)\(MAHB\)là hình bình hành.
\(\Rightarrow\)\(AH=BM\)
Do\(\widehat{BAC}=60^0\)
\(\Rightarrow BC=R\sqrt{3}\)
Áp dụng địn lí Pytago vào \(\Delta BMC\)
\(BM^2+BC^2=MC^2\)
\(\Leftrightarrow\)\(BM^2=4R^2-3R^2\)
\(\Leftrightarrow\)\(BM^2=R^2\)
\(\Leftrightarrow\)\(BM=\sqrt{R^2}=R\)
\(\Rightarrow\)\(AH=BM=R\)
Mà \(AO=\frac{2R}{2}=R\)
\(\Rightarrow\)\(AH=AO\)
\(\Rightarrow\)\(\Delta AHO\)cân tại \(A\)(ĐPCM)