K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2023

18 tháng 8 2021

A B C I K H D M O N

a, C thuộc đường tròn đk AD (gt) => ^ACD = 90 => AC _|_ CD mà có BH _|_ AC => CD // BH

    B thuộc đường tròn đk AD (gt) => ^ABD = 90 => AB _|_ BD mà có CH _|_ AB => BD // CH

=> BHCD là hình bình hành

b, có BHCD là hình bình hành => M là trung điểm của HD 

Có O là trung điểm của AD do AD là đường kính

=> MO là đường trung bình của tam giác AHD

=> MO = 1/2AH

=> AH = 2MO

c, Gọi AM cắt HO tại N

=> N là trọng tâm của tam giác AHD

=> AN = 2/3AM

mà có AM là đường trung tuyến của tam giác ABC

=> H là trọng tâm của tam giác ABC

ờm câu c cũng không chắc lắm

7 tháng 8 2018

A B C H I K

a)

Ta có:

Tam giác AKC vuông tại K \(\Rightarrow sinA=\frac{KC}{AC}\)

\(VT=S_{ABC}=\frac{1}{2}.AB.CK=\frac{1}{2}.AB.\left(AC.\frac{KC}{AC}\right)=\frac{1}{2}.AB.AC.sinA=VP\)(đpcm)

b)

\(\left(1-cos^2A-cos^2B-cos^2C\right).S_{ABC}\)

\(=\left(1-\frac{KC^2}{AC^2}-\frac{BI^2}{AB^2}-\frac{AH^2}{BC^2}\right).S_{ABC}\)

\(=\left[\left(1-\frac{AH^2}{BC^2}\right)-\left(\frac{KC^2}{AC^2}+\frac{BI^2}{AB^2}\right)\right].S_{ABC}\)

\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{AB^2.KC^2-AC^2.BI^2}{AB^2.AC^2}\right).S_{ABC}\)

\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{S^2_{ABC}-S^2_{ABC}}{AB^2.AC^2}\right).S_{ABC}\)

\(=\left(1-\frac{AH^2}{BC^2}\right).S_{ABC}=S_{ABC}-\frac{AH^2}{BC^2}.S_{ABC}\)

a: Xét tứ giác OHCK có

góc OHC+góc OKC=180 độ

=>OHCK là tứ giác nội tiếp

b: Vì góc BFC=góc BKC=90 độ

nên BFKC nội tiếp đường tròn đường kính BC

24 tháng 2 2023

Cảm ơn bạn nhiều ạ