K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Tính BE.BA + CD.CA

Chứng minh tương tự câu b, CD.CA = CI.CB

Từ đó BE.BA + CD.CA = BI.BC + CI.CB

= (BI + CI).BC = BC.BC = B C 2 = 16 2  = 256

4 tháng 2 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

19 tháng 7 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

17 tháng 2 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Chứng minh AI BC

Ta có ∠BEC = BDC = 90 0 (hai góc nội tiếp chắn nửa đườn tròn)

2 tháng 2 2022

bài này mới chữa trên lớp =))

2 tháng 2 2022

r làm đi =)

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

b: Ta có: H là trực tâm của ΔABC

nên AH⊥BC tại F

Xét ΔAEH vuông tại E và ΔAFB vuông tại F có

\(\widehat{EAH}\) chung

Do đó: ΔAEH\(\sim\)ΔAFB

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AH}{AB}\)

hay \(AE\cdot AB=AF\cdot AH\left(1\right)\)

Xét ΔADH vuông tại D và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔADH\(\sim\)ΔAFC

Suy ra: \(\dfrac{AD}{AF}=\dfrac{AH}{AC}\)

hay \(AD\cdot AC=AH\cdot AF\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AH\cdot AF=AD\cdot AC\)