Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh AI BC
Ta có ∠BEC = BDC = 90 0 (hai góc nội tiếp chắn nửa đườn tròn)
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
b: Ta có: H là trực tâm của ΔABC
nên AH⊥BC tại F
Xét ΔAEH vuông tại E và ΔAFB vuông tại F có
\(\widehat{EAH}\) chung
Do đó: ΔAEH\(\sim\)ΔAFB
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AH}{AB}\)
hay \(AE\cdot AB=AF\cdot AH\left(1\right)\)
Xét ΔADH vuông tại D và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔADH\(\sim\)ΔAFC
Suy ra: \(\dfrac{AD}{AF}=\dfrac{AH}{AC}\)
hay \(AD\cdot AC=AH\cdot AF\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AH\cdot AF=AD\cdot AC\)
d) Tính BE.BA + CD.CA
Chứng minh tương tự câu b, CD.CA = CI.CB
Từ đó BE.BA + CD.CA = BI.BC + CI.CB
= (BI + CI).BC = BC.BC = B C 2 = 16 2 = 256