K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔMDP vuông tại D có

\(MP^2=MD^2+DP^2\)

hay DP=4(cm)

Xét ΔMPQ vuông tại M có MD là đường cao ứng với cạnh huyền QP, ta được:

\(MP^2=DP\cdot QP\)

hay QP=6,25(cm)

24 tháng 6 2021

Áp dụng hệ thức lượng trong tam giác vuông có:

\(MD^2=ND.DP\)\(\Rightarrow ND=\dfrac{MD^2}{DP}=\dfrac{12^2}{16}=9cm\)

\(\dfrac{1}{DK^2}=\dfrac{1}{ND^2}+\dfrac{1}{DM^2}=\dfrac{25}{1296}\)

\(\Rightarrow DK=\dfrac{36}{5}\) (cm)

Vậy...

DK =36/5 (cm) nha

19 tháng 7 2017

BAN TU VE HINH NHA 

a, trong tam giác MNK có \(\sin N=\frac{4}{5}\Rightarrow GOCN\approx53\)

ap dung dl pitago vao tam giac vuong MNK co \(NK^2+MK^2=NM^2\Rightarrow NK^2=5^2-4^2=3^2\Rightarrow NK=3\)

B, ap dung he thuc luong vao tam giac vuong MNK co \(MK^2=MC\cdot MN\)

                                               tam giac vuong MKP co\(MK^2=MD\cdot MP\)

 tu day suy ra  MC*MN=MD*MP

C, ta co \(NP=NK+KP\)

ma \(NK=MK\cdot cotN\) \(KP=MK\cdot cotP\)

suy ra \(NP=MK\cdot\left(cotN+cotP\right)\)

D,  ta co  trong tam giac vuong MDK \(MD=MK\cdot cosM=4\cdot cos30=2\sqrt{3}\)

ma trong tam giac vuong MKP c o\(MK^2=MD\cdot MP\Rightarrow MP=\frac{4^2}{2\sqrt{3}}=\frac{8\sqrt{3}}{3}\)

 lai co \(MD+DP=MP\Rightarrow DP=\frac{2\sqrt{3}}{3}\)

a: \(MH=\sqrt{4\cdot9}=6\left(cm\right)\)

\(MP=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)

\(MN=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)

b: Ta có: ΔMNP vuông tại M

mà MI là đường trung tuyến

nên MI=NP/2=6,5(cm)

a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên MH*NP=MN*MP

=>MH*10=6*8=48

=>MH=4,8cm

Xét ΔMNP có MD là phân giác

nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)

c: MN*sinP+MP*sinN

=MN*MN/NP+MP*MP/NP

=(MN^2+MP^2)/NP

=NP^2/NP

=NP

28 tháng 7 2023

loading...

28 tháng 7 2023

(Tự vẽ hình)

- Xét △MNP vuông tại M, áp dụng định lí Pytago:

\(^{NM^2}\)+\(MP^2\)=\(NP^2\)

=\(72^2\)+\(96^2\)=\(NP^2\)

\(NP^2\)=\(72^2\)+\(96^2\)=14400

\(NP\)=\(\sqrt{14400}\)=120cm

 - Xét △MNP vuông tại M, đường cao MH, theo hệ thức lượng ta có:

\(MN^2\)=\(NH.NP\)

\(72^2\)=\(NH.120\)

\(NH\)=\(\dfrac{72^2}{120}\)=43,2 cm

\(MH.NP\)=\(MP.MN\)

⇔ \(MH\)=\(\dfrac{MP.MN}{NP}\)=\(\dfrac{96.72}{120}\)=3,6cm

 

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

Câu 1: C

Câu 2: A

Câu 3: D

2 tháng 10 2021

\(NP=NI+PI=8\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}MP^2=PI\cdot PN=40\\MN^2=NI\cdot PN=24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}MP=2\sqrt{10}\left(cm\right)\\NM=2\sqrt{6}\left(cm\right)\end{matrix}\right.\)

\(P_{MPN}=MN+NP+PM=2\sqrt{10}+2\sqrt{6}+8=2\left(\sqrt{10}+\sqrt{6}+4\right)\left(cm\right)\)

Xét ΔMPN vuông tại M có MI là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MP^2=PI\cdot PN\\MN^2=NI\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MP=2\sqrt{10}\left(cm\right)\\MN=2\sqrt{6}\left(cm\right)\end{matrix}\right.\)

\(C_{MPN}=2\sqrt{10}+2\sqrt{6}+8\left(cm\right)\)