Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do F là trung điểm NP
E là trung điểm MP
=> EF là đường trung bình
=> \(EF=\dfrac{1}{2}MN=\dfrac{1}{2}.56=28\left(cm\right)\)
Diện tích tam giác MNP
\(S_{MNP}=\dfrac{1}{2}MN.MP=\dfrac{1}{2}.56.12=336\left(cm^2\right)\)
b,
Xét tứ giác NDEM có
ND // ME (gt)
DE // MN ( cmt)
=> NDEM là hình bình hành
mà có góc \(\widehat{NME}=90^o\)
=> NDEM là hình chữ nhật
c, NDEM là hình chữ nhật
=> ME = ND
mà ME = EP (do E là trung điểm MP)
=> ND = EP
Xet tứ giác NDPE có
ND = EP (cmt)
ND // EP (gt)
=> NDPE là hình bình hành
a) Xét tam giác HMN và tam giác MNP:
Góc B chung.
Góc MHN = Góc NMP (cùng = 90o).
=> Tam giác HMN \(\sim\) Tam giác MNP (g - g).
b) Xét tam giác MNP vuông tại M, MH là đường cao:
=> MH2 = NH . PH (Hệ thức lượng trong tam giác vuông).
c) Xét tam giác NFH và tam giác MEH:
Góc FNH = Góc EMH (cùng phụ với góc MPN).
Góc NHF = Góc MHE (cùng phụ với góc MHF).
=> Tam giác NFH \(\sim\) Tam giác MEH (g - g).
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: Xét ΔMNP vuông tại M có MH là đường cao
nên \(MH^2=NH\cdot PH\)
a: NP=căn 8^2+15^2=17cm
MK=8*15/17=120/17cm
b: góc MEK=góc MFK=góc FME=90 độ
=>MEKF là hình chữ nhật
=>MK=EF=120/17cm
c: ΔMKN vuông tại K có KE là đường cao
nên ME*MN=MK^2
ΔMKP vuông tại K có KF là đường cao
nên MF*MP=MK^2
=>ME*MN=MF*MP
ef =10cm