K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

Vì \(\widehat{MIN};\widehat{MIP}\) lần lượt là góc ngoài tg MIP và NIM nên

\(\widehat{MIP}-\widehat{MIN}=\widehat{IMN}+\widehat{N}-\widehat{IMP}-\widehat{P}==\widehat{N}-\widehat{P}\left(\widehat{IMN}=\widehat{IMP}\right)\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a)

Xét tam giác MPK có:

\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)

Xét tam giác NPK có:

\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)

Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)

Suy ra \(\widehat {MKP} = \widehat {NKP}\).

b)Xét hai tam giác MPK và NPK có:

\(\widehat {MPK} = \widehat {NPK}\)

PK chung

\(\widehat {MKP} = \widehat {NKP}\)

=>\(\Delta MPK = \Delta NPK\)(g.c.g)

c) Do \(\Delta MPK = \Delta NPK\) nên MP=NP (2 cạnh tương ứng)

=> Tam giác MNP cân tại P.

31 tháng 12 2016

tui làm rồi đó

31 tháng 12 2016

tui làm rồi đó

31 tháng 12 2016

Ta có: 5\(\widehat{M}\) = 3\(\widehat{N}\) => \(\frac{\widehat{M}}{3}\) = \(\frac{\widehat{N}}{5}\) => \(\frac{7\widehat{M}}{21}\) = \(\frac{4\widehat{N}}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{7\widehat{M}}{21}\) = \(\frac{4\widehat{N}}{20}\) = \(\frac{7\widehat{M}-4\widehat{N}}{21-20}\) = 15o

Do \(\frac{7\widehat{M}}{21}\) = 15 => \(\widehat{M}\) = 45

\(\frac{4\widehat{N}}{20}\) = 15 => \(\widehat{N}\) = 75

Áp dụng tính chất tổng 3 góc trong 1 tam giác ta có:

\(\widehat{M}\) + \(\widehat{N}\) + \(\widehat{P}\) = 180 độ

=> 45 + 75 + \(\widehat{P}\) = 180

=> \(\widehat{P}\) = 60o

Vậy \(\widehat{P}\) = 60o.

16 tháng 12 2021

Chọn A

16 tháng 12 2021

A

21 tháng 2 2022

mn 7cm nha 

5 tháng 10 2023

a) Để chứng minh a) ta cần chứng minh rằng góc ADC bằng góc BEC.

Vì AD là đường phân giác của góc BAC, nên ta có:

∠DAB = ∠DAC (1)

Tương tự, vì BE là đường phân giác của góc ABC, nên ta có:

∠CBA = ∠CBE (2)

Từ (1) và (2), ta có:

∠DAB + ∠CBA = ∠DAC + ∠CBE

∠DAB + ∠CBA = ∠BAC + ∠ABC

∠DAB + ∠CBA = ∠ABC + ∠BAC

Do đó, góc ADC bằng góc BEC.

Tiếp theo, để chứng minh rằng góc A bằng góc B, ta sử dụng định lý phụ của đường phân giác:

∠DAB = ∠DAC

∠EBA = ∠EBC

Vì ∠ADC = ∠BEC (đã chứng minh ở trên), nên ta có:

∠DAC + ∠ADC = ∠DAB + ∠ABC

∠DAB + ∠ABC = ∠DAC + ∠ADC

Từ đây, suy ra ∠A = ∠B.

Vậy, điều phải chứng minh a) đã được chứng minh.

b) Để chứng minh b), ta cần chứng minh rằng góc ADB bằng góc BEC.

Từ ∠ADB = ∠BEC (đã chứng minh ở a)), ta có:

∠ADB + ∠BEC = ∠BEC + ∠BEC

∠ADB + ∠BEC = 2∠BEC

∠ADB = ∠BEC

Do đó, góc ADB bằng góc BEC.

Tiếp theo, ta có:

∠A + ∠B + ∠C = 180° (định lý tổng các góc trong tam giác)

∠ADB + ∠B + ∠BEC = 180°

∠BEC + ∠B + ∠BEC = 180° (vì ∠ADB = ∠BEC)

2∠BEC + ∠B = 180°

2∠BEC = 180° - ∠B

∠BEC = (180° - ∠B) / 2

∠BEC = 90° - ∠B/2

∠BEC = 90° - ∠A/2 (vì ∠A = ∠B)

∠A/2 + ∠B/2 + ∠C = 90°

∠A/2 + ∠B/2 + ∠C = 90° - ∠A/2

∠A/2 + ∠A/2 + ∠C = 90° - ∠A/2

∠A + ∠C = 90° - ∠A/2

∠A + ∠C + ∠A/2 = 90°

2∠A + ∠C = 180°

∠A + ∠C = 180° - ∠A

∠A + ∠C = ∠B

∠A + ∠B + ∠C = 180°

∠A + ∠B + ∠C = 120° + 60°

∠A + ∠B + ∠C = 180°

Do đó, ∠A + ∠B = 120°.

Vậy, điều phải chứng minh b) đã được chứng minh.