K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: Q và A đối xứng với nhau qua MN

nên MN là đường trung trực của QA

=>MN vuông góc với QA tại trung điểm của QA

Ta có: Q và B đối xứng với nhau qua MP

nên MP là đường trung trực của QB

=>MP vuông góc với QB tại trung điểm của QB

Xét tứ giác MRQS có 

\(\widehat{MRQ}=\widehat{MSQ}=\widehat{SMR}=90^0\)

Do đó: MRQS là hình chữ nhật

b: Xét ΔMNP có

Q là trung điểm của NP

QS//MN

Do đó: S là trung điểm của MP

Xét tứ giác MQPB có 

S là trung điểm của MP

S là trung điểm của QB

Do đó: MQPB là hình bình hành

mà QM=QP

nên MQPB là hình thoi

a: H đối xứng A qua MN

nên HA vuông góc với MN tại trung điểm của HA

=>MN là phân giác của góc AMH(1)

H đối xứng B qua MP

nên HB vuông góc với MP tại D và D là trung điểm của HB

=>MP là phân giác của góc HMB(2)

Xét tứ giác MCHD có

góc MCH=góc MDH=góc DMC=90 độ

nên MCHD là hình chữ nhật

b: Từ (1), (2) suy ra góc BMA=2*90=180 độ

=>B,M,A thẳng hàng

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

a: Xét tứ giác MNPQ có 

A là trung điểm của MP

A là trung điểm của NQ

Do đó: MNPQ là hình bình hành

b: Xét tứ giác MPQI có 

MI//QP

MI=QP

Do đó: MPQI là hình bình hành

mà \(\widehat{PMI}=90^0\)

nên MPQI là hình chữ nhật

c: Xét ΔNIB có 

M là trung điểm của IN

MK//IB

Do đó: K là trung điểm của NB

=>NK=KB(1)

Xét ΔPMK có

A là trung điểm của MP

AB//MK

Do đó: B là trung điểm của PK

Suy ra: PB=BK(2)

Từ (1) và (2) suy ra KP=2KN