Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
b: Xét ΔBMD vuông tại M và ΔCNE vuông tại N có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔBMD=ΔCNE
c: Ta có: ΔBMD=ΔCNE
nên BM=CN
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
a. xét tam giác ABD và tam giác ACE, có:
BD = CE ( gt )
góc DBA = góc ECA ( 2 góc ngoài của tam giác cân )
AB = AC ( ABC cân )
Vậy tam giác ABD = tam giác ACE ( c.g.c )
=> AD = AE ( 2 cạnh tương ứng )
b.xét tam giác vuông BMD và tam giác vuông CNE, có:
BD = CE ( gt )
góc D = góc E ( tam giác ABD = tam giác ACE )
Vậy tam giác vuông BMD = tam giác vuông CNE ( cạnh huyền. góc nhọn)
c.xét tam giác vuông AMB và tam giác vuông ANC, có:
góc DAB = góc EAC ( tam giác ABD = tam giác ACE )
AB = AC ( ABC cân )
Vậy tam giác vuông AMB = tam giác vuông ANC( cạnh huyền. góc nhọn )
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
a: NP=5cm
b: Xét ΔNMQ vuông tại M và ΔNKQ vuông tại K có
NQ chung
góc MNQ=góc KNQ
Do đo: ΔMNQ=ΔKNQ
c: Xét ΔMQH vuông tại M và ΔKNP vuông tại K có
QM=QK
\(\widehat{MQH}=\widehat{KQP}\)
Do đo;s ΔMQH=ΔKNP
Suy ra: MH=KP
=>NH=NP
hay ΔNHP cân tại N
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6