Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔPAN có
PM là đường trung tuyến
PM là đường cao
DO đó: ΔPAN cân tại P
b: \(MP=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔPNA có
PM là đường trung tuyến
NB là đường trung tuyến
PM cắt NB tại G
Do đó; G là trọng tâm của ΔPAN
Suy ra: PG=2/3PM=2(cm)
a: Xét ΔPAN có
PM vừa là đường cao, vừa là trung tuyến
=>ΔPAN cân tại P
b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔPAN có
NB,PM là trung tuyến
NB cắt PM tại G
=>G là trọng tâm
GP=2/3*3=2cm
c: CI là trung trực của MP
=>I là trung điểm của MP và CI vuông góc MP tại I
Xét ΔMPN có
I là trung điểm của PM
IC//MN
=>C là trung điểm của PN
=>PM,NB,AC đồng quy
tự vẽ hình
a)Xét tam giác PMN vuông ở M và tam giác PMA vuông ở M có:
PM:cạnh chung
MN=MA (gt)
=>tam giác PMN=tam giác PMA (2 cạnh góc vuông)
=>PN=PA (cặp cạnh t.ứ)
b)Xét tam giác PMN vuông ở M có:
PM2+MN2=PN2 (Pytago)
=>PM2=PN2-MN2=52-42=9
=>PM=3(cm)
Ta có: MA+MN=AN (M \(\in\) AN),mà MA=MN(gt)
=>M là trung điểm của AN
=>PM là đg trung tuyến ứng với cạnh AN (1)
Vì B là trung điểm của AP (gt)
=>NB là đg trung tuyến ứng với cạnh AP (2)
Từ (1);(2) lại có NB cắt PM tại G
=>G là trọng tâm trong tam giác APM
=>\(GP=\frac{2}{3}PM=\frac{2}{3}.3=2\left(cm\right)\)
a: Xét ΔMNA và ΔMBA có
MN=MB
góc NMA=gócBMA
MA chung
Do đó: ΔMNA=ΔMBA
=>AN=AB
b: MN=MB
AN=AB
=>MA là trung trực của NB
=>MA vuông góc với NB
c: Xét ΔMCP có MN/MC=MB/MP
nên NB//CP
d: Xét ΔANC và ΔABP có
AN=AB
góc ANC=góc ABP
NC=BP
Do đó: ΔANC=ΔABP
=>góc NAC=góc BAP
=>góc NAC+góc NAB=180 độ
=>B,A,C thẳng hàng