Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M P N I H K
Câu a, b em tự làm nhé nó khá đơn giản
câu c)
Áp dụng định lí pitago cho 2 tam giác vuông IKM và IKP ta có:
\(IK^2=MI^2-MK^2\)
\(IK^2=IP^2-KP^2\)
Cộng vế theo vế ta có;
\(2IK^2=MI^2-MK^2+IP^2-KP^2=\left(MI^2+IP^2\right)-MK^2-KP^2=MP^2-MK^2-KP^2\)( Áp dụng định lí pita go cho tam giác MIP)
Mà MP=MN
=> Điều p cm
M N P E F Q
a/ Xét \(\Delta EFM\)và \(\Delta QFP\)có
\(\hept{\begin{cases}EF=QF\\\widehat{EFM}=\widehat{QFP}\\FM=FP\end{cases}}\)
\(\Rightarrow\Delta EFM=\Delta QFP\)
\(\Rightarrow EM=QP\)
Mà \(EM=NE\Rightarrow NE=QP\)
b/ Từ câu a ta có \(\widehat{EMF}=\widehat{QPF}\)
\(\Rightarrow\widehat{EPQ}=\widehat{EPM}+\widehat{FPQ}=\widehat{EPM}+\widehat{EMF}=\widehat{NEP}\left(1\right)\)
Xét \(\Delta NEP\) và \(\Delta QPE\)có
\(\hept{\begin{cases}EP\left(chung\right)\\NE=QP\\\widehat{NEP}=\widehat{QPE}\end{cases}}\)
\(\Rightarrow\Delta NEP=\Delta QPE\)
c/ Từ câu b/ ta suy ra \(\widehat{NPE}=\widehat{PEQ}\)
=>EF // NP
Lại từ câu b ta có
\(NP=EQ=EF+FQ=2EF\)
\(\Rightarrow EF=\frac{1}{2}NP\)
bài này động đến đường trung bình của tam giác
nếu khó hơn thì học sẽ ko cho trc điểm Q và các câu a và b
Ta có hình vẽ:
M N P E F Q
a/ Xét tam giác MEF và tam giác PQF có:
MF = EP (GT)
\(\widehat{MFE}\)=\(\widehat{PFQ}\) (đối đỉnh)
EF = FQ (GT)
=> tam giác MEF= tam giác PQF (c.g.c)
=> ME = QP (2 cạnh tương ứng)
Ta có: \(\begin{cases}ME=QP\\ME=NE\end{cases}\)\(\Rightarrow\)NE = PQ (đpcm)
b/ Ta có: \(\widehat{EMF}\)=\(\widehat{FPQ}\) (tam giác MEF = tam giác FQP)
Mà 2 góc này đang ở vị trí so le trong
=> ME // QP
Ta có: ME trùng NE, mà ME // PQ
=> NE // PQ => \(\widehat{NEP}\)=\(\widehat{EPQ}\) (so le trong) (1)
Ta có: NE = PQ (câu a) (2)
EP: cạnh chung (3)
Từ (1),(2),(3) => tam giác NEP = tam giác QPE (c.g.c)
c/ Ta có: tam giác NEP = tam giác QPE (câu b)
=> EQ = NP
Mà EF = FQ ( theo giả thiết)
=> EF = FQ = \(\frac{1}{2}\)EQ=\(\frac{1}{2}\)NP
Vậy EF = \(\frac{1}{2}\) NP (đpcm)
Do tam giác NEP = tam giác QPE (câu b)
=> \(\widehat{QEP}\)=\(\widehat{EPN}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> EQ // NP hay EF // NP (vì E,F,Q cùng nằm trên 1 đường thẳng) (đpcm)
Ta có: ∠P = 180o - 110o - 40o = 30o ⇒ P < N < M
⇒ NM < MP < MP
Chọn A