K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

tự vẽ hình nha

a) xét tam giác MEN và tam giác MFP có:

\(\widehat{MFP}=\widehat{MEN}\left(=90'\right)\)

\(chung\widehat{NMP}\)

suy ra tam giác MEN đồng dạng với tam giác MFP (g-g)

do tam giác MEN đồng dạng với tam giác MFP

\(\Rightarrow\frac{ME}{MF}=\frac{MN}{MP}\)

lại có \(\widehat{NMP}\) chung

suy ra tam giác MFE đồng dạng với tam giác MPN

\(\Rightarrow\widehat{MEF}=\widehat{MNP}\)

17 tháng 3 2018

cám ơn Guiltykamikk

DD
6 tháng 3 2021

a) Xét tam giác \(MKN\)và tam giác \(MSP\)

\(\widehat{M}\)chung

\(\widehat{MKN}=\widehat{MSP}\left(=90^o\right)\)

\(\Rightarrow\Delta MKN\)đồng dạng với \(\Delta MSP\)(g.g)

\(\Rightarrow\frac{MK}{MS}=\frac{MN}{MP}\)

\(\Rightarrow\frac{MK}{MN}=\frac{MS}{MP}\).

Xét tam giác \(MNP\)và tam giác \(MKS\):

\(\widehat{M}\)chung

\(\frac{MK}{MN}=\frac{MS}{MP}\)(cmt)

Suy ra tam giác \(MNP\)đồng dạng với tam giác \(MKS\)(c.g.c).

b), c) Tương tự. 

5 tháng 8 2021

cho mik xin câu a b đi bạn

 

a) Xét ΔMBP vuông tại B và ΔMAN vuông tại A có 

\(\widehat{BMP}\) chung

Do đó: ΔMBP\(\sim\)ΔMAN(g-g)

Suy ra: \(\dfrac{MB}{MA}=\dfrac{MP}{MN}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MB\cdot MN=MA\cdot MP\)

b) Xét ΔMNP có 

NA là đường cao ứng với cạnh MP(gt)

PB là đường cao ứng với cạnh MN(gt)

NA cắt PB tại H(gt)

Do đó: H là trực tâm của ΔMNP(Tính chất ba đường cao của tam giác)

Suy ra: MH\(\perp\)NP tại C