Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì Tam giác `MNP` cân tại `M -> MN = MP,` \(\widehat{N}=\widehat{P}\)
Mà `MN= 3 cm, `\(\widehat{N}=60^0\)
`-> MN = MP = 3 cm, `\(\widehat{N}=\widehat{P}=60^0\)
Xét Tam giác `MNP:`
\(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
`->`\(\widehat{M}+60^0+60^0=180^0\)
`->`\(\widehat{M}=60^0\)
Ta có:
\(\widehat{M}=\widehat{N}=\widehat{P}=60^0\)
`->` \(\text {Tam giác MNP là tam giác đều}\)
`-> MN = MP = NP = 3 cm.`
Có \(\Delta ABC\)cân tại A => \(\hept{\begin{cases}AB=BC\\\widehat{ABC}=\widehat{BCA}\end{cases}}\)
Mà \(\widehat{B}=30^o\left(gt\right)\Rightarrow\widehat{C}=30^o\)
Xét \(\Delta ABC\)có: \(\widehat{A}+\widehat{B}+\widehat{C}=108^o\)(tổng 3 góc trong 1 tam giác)
Thay \(\widehat{B}=30^o\left(gt\right);\widehat{C}=30^o\left(cmt\right)\)
\(\Rightarrow\widehat{A}=180^o-60^o\Leftrightarrow\widehat{A}=120^o\)
Vậy:...
\(\widehat{MPN}\) \(=180^o-160^o=20^o.\)
Xét tam giác MNP:
\(\widehat{M}+\widehat{MPN}+\widehat{MNP}=\) \(180^o\) (Tổng 3 góc trong tam giác).
\(\Rightarrow140^o+20^o+\)\(\widehat{MNP}=\) \(180^o.\)
\(\Rightarrow\) \(\widehat{MNP}=20^{o}.\)
Xét tam giác MNP: \(\widehat{MPN}=\widehat{MNP} (=20^{o}).\)
\(\Rightarrow\) Tam giác MNP cân tại M.
Vì góc ngoài tại P có số đo là 160 độ nên ta có:
\(\widehat{M}+\widehat{N}=160^0\)
\(\Leftrightarrow\widehat{N}=20^0\)
\(\Leftrightarrow\widehat{P}=20^0\)
hay ΔMNP cân tại M
a. tam giác ABC vg tại A suy ra B+C=90 suy ra B=90-40=50
b. từ đề bài suy ra N+P=180-75=105 và N=P=(N+P)/2=......
a) Từ \(\Delta ABC\)cân tại A, \(\Rightarrow\widehat{B}=\widehat{C}=75^o\)
\(\Rightarrow\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{A}=180^o-\left(75^o+75^o\right)\)
\(\Rightarrow\widehat{A}=30^o\)
b) Từ \(\Delta MNP\)cân tại P, \(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{P}}{2}=\frac{80^o}{2}=40^o\)
c) Ta có: \(NP^2=13^2=169\)(1)
\(MN^2+MP^2=5^2+12^2=25+144=169\)(2)
Từ (1) và (2) suy ra: \(NP^2=MN^2+MP^2\)
\(\Rightarrow\Delta MNP\)vuông (theo định lí Pytago)
Happy new year!!!
N M P
(*) Hình ảnh mang tính chất minh họa
Ta có :
\(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
\(120^0+\widehat{N}+\widehat{P}=180^0\)
\(\widehat{N}+\widehat{P}=180^0-120^0=60^0\)
\(\Rightarrow\widehat{N}=\widehat{P}=\frac{60^0}{2}=30^0\)
Vậy \(\widehat{N}=\widehat{P}=30^0\)
ta co: goc M +goc N +goc P =180 do
Ma do tam giac mnp can tai M
=> goc N =goc P => goc M + 2 goc N =180 do
=> goc N =goc P =30 do
a) Ta có tam giác MNP cân tại M => \(\widehat{N}=\widehat{P}\)
mà \(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
\(=>\widehat{N}+\widehat{P}=180^0-\widehat{M}=180^0-65^0=115^0\)
\(=>\widehat{N}=\widehat{P}=115^0:2=57,5^0\)
b) Ta có \(\widehat{N}=\widehat{P}\left(cmt\right)\)
\(=>\widehat{P}=50^0\)
Mà \(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
\(=>\widehat{M}=180^0-\left(\widehat{N}+\widehat{P}\right)=180^0-\left(50^0+50^0\right)=180^0-100^0=80^0\)
Vì tam giác MNP cân tại M nên góc N bằng góc P
=> N = P = 40 độ
M N P
Vì MNP là tam giác cân và cân tại M
\(\Rightarrow\widehat{N}=\widehat{P}=40^0\)(đpcm)
Chúc bạn học tốt !