K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2016

a) áp dụng định lí py-ta-go, ta có:

\(NK^2=MK^2+MN^2=12^2+9^2=144+81=225\)

\(NK=\sqrt{225}=25\left(cm\right)\)

b)xét tam giác NMK và NIK có:

IM=MN(gt)

MK(chung)

NMK=IMK=90

suy ra tam giác NMK=NIK(c.g.c)

suy ra KN=KI suy ra tam giác KIN cân tại K

c) theo câu a, ta có tam giác NIK cân tại K suy ra KIN=KNI

xét 2 tam giác vuông NAM và IBM có:

NM=MI(gt)

KIN=KIN( tam giác NIK cân tại K)

suy ra tam giác NAM=IBM(CH-GN) suy ra MA=MI

xét 2 tam giác vuông KAM và KBM có:

KM(chung)

MA=MB(cmt)

suy ra tam giác MAK=MBK(CH-CGV)

16 tháng 3 2016

a) áp dụng định lí py-ta-go, ta có:

NK^2=MK^2+MN^2=12^2+9^2=144+81=225

NK=√225=25(cm)

b)xét tam giác NMK và NIK có:

IM=MN(gt)

MK(chung)

NMK=IMK=90

suy ra tam giác NMK=NIK(c.g.c)

suy ra KN=KI suy ra tam giác KIN cân tại K

c) theo câu a, ta có tam giác NIK cân tại K suy ra KIN=KNI

xét 2 tam giác vuông NAM và IBM có:

NM=MI(gt)

KIN=KIN( tam giác NIK cân tại K)

suy ra tam giác NMA=IMB(CH-GN) suy ra MA=MI

xét 2 tam giác vuông KAM và KBM có:

KM(chung)

MA=MB(cmt)

suy ra tam giác MAK=MBK(CH-CGV)

16 tháng 3 2018

Áp dụng định lý Py Ta Go vào tam giác MNK ta được:

NK^2=NM^2+MK^2

NK^2=9^2+12^2

NK^2=81+144

NK^2=225

=>NK=15

4 tháng 3 2018

N M K I A B

a) Áp dụng định lí pi-ta-go vào \(\Delta MNK\)vuông tại M có:

\(NK^2=NM^2+MK^2\Rightarrow NK^2=9^2+12^2\Rightarrow NK=15\)

b) Xét \(\Delta NMK\)vuông tại M và \(\Delta IMK\)vuông tại M có:

MK chung

NM=IM (gt)

\(\Rightarrow\Delta MNK=\Delta IMK\left(cgv-cgv\right)\)

\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)hay \(\widehat{AKM}=\widehat{BKM}\)

Xét \(\Delta MAK\)vuông tại A và \(\Delta MBK\)vuông tại B có:

\(\widehat{AKM}=\widehat{BKM}\)(c/m trên)

MK chung

\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)

c) Vì \(\Delta MAK=\Delta MBK\)

\(\Rightarrow AK=BK\Rightarrow\Delta ABK\)cân tại K

\(\Rightarrow\widehat{KAB}=\widehat{KBA}\)

Áp dụng tính chất tổng 3 góc trong 1 tam giác có:

\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)

\(\Rightarrow\widehat{KAB}=\frac{180^o-\widehat{NKI}}{2}\left(1\right)\)

tới đây bn tự làm tiếp

8 tháng 2 2018

câu a) áp dụng định lý Pytago mà làm 

b) ta có: \(MN=MI\)và \(MK\perp NI\)

\(\Rightarrow MK\) là đường trung trực \(\Delta KNI\)

xét \(\Delta KNM\)và \(\Delta KIM\)  có: 

\(KM\)chung 

\(\widehat{KMN}=\widehat{KMI}\)  \(=90^0\)

\(MN=MI\)

\(\Rightarrow\Delta KNM=\Delta KIM\)  ( C.G.C)

\(\Rightarrow KN=KI\)

\(\Rightarrow\Delta KNI\)cân

11 tháng 3 2018

câu a) áp dụng định lý Pytago mà làm  b) ta có: MN = MI và MK⊥NI

⇒MK là đường trung trực ΔKNI xét ΔKNMvà ΔKIM  có: 

KMchung  =    = 90 0

MN = MI

⇒ΔKNM = ΔKIM  ( C.G.C)

⇒KN = KI ⇒ΔKNI cân

mk nghĩ vậy 

:3

a: NK=15cm

b: Xét ΔKNI cso

KM là đường cao

KM là đường trung tuyến

DO đó: ΔKNI cân tại K

c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có

MK chung

\(\widehat{AKM}=\widehat{BKM}\)

Do đó: ΔMAK=ΔMBK

d: Xét ΔKIN có KB/KI=KA/KN

nên AB//IN

a: NK=căn 9^2+12^2=15cm

b: Xét ΔKIN có

KM vừalà đườg cao, vừa là trung tuyến

=>ΔKIN cân tại K

c: Xét ΔKBM vuông tại B và ΔKAM vuông tại A có

KM chung

góc BKM=góc AKM

=>ΔKBM=ΔKAM

=>KB=KA

d: Xét ΔKIN có KB/KI=KA/KN

=>BA//IN

a: NK=căn 9^2+12^2=15cm

b: Xét ΔKIN có

KM vừa là đường cao, vừa là trung tuyến

=>ΔKIN cân tại K

c: Xét ΔKBM vuông tại B và ΔKAM vuông tại A có

KM chung

góc BKM=góc AKM

=>ΔKBM=ΔKAM

d: ΔKBM=ΔKAM

=>KB=KA

Xét ΔKIN có KB/KI=KA/KN

nên AB//IN

a: NK=15cm

b: Xét ΔKNI có

KM là đường cao

KM là đường trung tuyến

Do đó: ΔKNI cân tại K

c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có

KM chung

góc AKM=góc BKM

Do đo: ΔMAK=ΔMBK

d: Xét ΔKIN có KB/KI=KA/KN

nên AB//NI

18 tháng 3 2018

a)Ta có :

Vì Δ MNK vuông M nên NK2 = MN2 + MK2

⇒NK2 = 92 + 122

⇒NK2 = 81 + 144

⇒NK2 = 225

Vậy NK = 15

b)Theo CM trên, ta có :

NK2 = MN2 + MK2

IK2 = MI2 + MK2

MN = MI (gt) ; MK chung

⇒MN2+MK2 = MI2+MK2 hay NK=IK

⇒ΔKNI cân N

c)Ta có :

MK chung(1)

\(\widehat{MAK}=\widehat{MBK}=90^o\)(2)

Xét Δ MNK và Δ MIK, ta có :

MK chung

MI = MN

NK = IK

⇒Δ MNK = Δ MIK(c.c.c)

\(\widehat{MKN}=\widehat{MKI}\)(hai góc tương ứng)(3)

Từ (1), (2)(3) ⇒ ΔMAK=ΔMBK(cạnh huyền-góc nhọn)

d)Ta thấy : Δ MNK vuông M hay KM ⊥NI+

Gọi điểm C là điểm giao giữa AB và KM, ta có :

\(\widehat{KCA}+\widehat{KCB}=180^o\)*

Xét ΔKCA và ΔKCB, ta có :

AK=BK(ΔMAK=ΔMBK)

CK chung

\(\widehat{CKA}=\widehat{CKB}\)(Δ MNK = Δ MIK)

⇒ΔKCA = ΔKCB(c.g.c)

\(\widehat{CAK}=\widehat{CBK}\)(hai góc tương ứng)**

Từ * và ** ⇒ \(\widehat{CAK}=\widehat{CBK}=90^o\) hay KM ⊥ AB++

Từ + ++ ⇒ AB // NI