Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề có chỗ nhầm lẫn: Từ M vẽ tia Mx vuông góc với AC và cắt AC tại N
a) MN ⊥ AC; AB ⊥ AC => MN // AB
=> Tam giác CMN đồng dạng với ABC
b) MN/AB = CM/CB => MN/9 = 4/15 => MN = 9 . 4 /15
c) AC2 = BC2 - AB2 = 152 - 92 = 144
=> AC = 12
Diện tích ABC = 1/2 x 12 x 9
Vì CMN đồng dạng với ABC theo tỉ số đồng dạng là 4/15
=> Diện tích MNC = (4/15)2 x (diện tích ABC)
Bạn tự thay số rồi tính nhé
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
c: AM=BC/2=5cm
=>HM=1,4cm
S HAM=1/2*1,4*4,8=3,36cm2
a: Xét tứ giác MPNI có
Q là trung điểm chung của MN và PI
Do đó: MPNI là hình bình hành
b: Xét ΔNMP có NQ/NM=NK/NP
nên QK//MP
=>QK vuông góc với MN
Áp dụng định lí Pitago ta tính được BC
Tam giác ABC vuông tại A có AM là trung tuyển \(\Rightarrow AM=\dfrac{1}{2}BC\)
a.Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(AC^2=BA^2+BC^2\)
\(\Rightarrow BC=\sqrt{AC^2-BA^2}=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
\(S_{ABC}=\dfrac{1}{2}.BA.BC=\dfrac{1}{2}.6.8=24cm^2\)
b.Xét tam giác BAH và tam giác ABC, có:
\(\widehat{B}=\widehat{H}=90^o\)
Góc A: chung
Vậy tam giác BAH đồng dạng tam giác ABC ( g.g )
\(\Rightarrow\dfrac{BH}{BC}=\dfrac{AB}{AC}\)
\(\Leftrightarrow\dfrac{BH}{8}=\dfrac{6}{10}\)
\(\Leftrightarrow10BH=48\Leftrightarrow BH=4,8cm\)
Áp dụng định lý pitago vào tam giác vuông ABH, có:
\(AB^2=AH^2+BH^2\)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6cm\)
Áp dụng định lý pitago vào tam giác vuông ACH, có:
\(BC^2=CH^2+BH^2\)
\(\Rightarrow CH=\sqrt{BC^2-BH^2}=\sqrt{8^2-4,8^2}=\sqrt{40,96}=6,4cm\)
c. Xét tam giác BHA và tam giác BHC, có:
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\widehat{ACH}=\widehat{BAH}\) ( cùng phụ với góc B )
Vậy tam giác BHA đồng dạng tam giác BHC ( g.g )
a) -Xét △ABC vuông tại B:
\(AB^2+BC^2=AC^2\) (định lí Py-ta-go)
\(\Rightarrow BC=\sqrt{AC^2-AB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{ABC}=\dfrac{AB.BC}{2}=\dfrac{6.8}{2}=24\left(cm^2\right)\)
b) -Xét △BAH và △ABC:
\(\widehat{AHB}=\widehat{ABC}=90^0\)
\(\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△BAH∼△CAB (g-g)
\(\Rightarrow\dfrac{BH}{CB}=\dfrac{AH}{AB}=\dfrac{BA}{CA}\)
\(\Rightarrow BH=\dfrac{BA.CB}{CA}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
\(AH=\dfrac{BA.AB}{CA}=\dfrac{6.6}{10}=3,6\left(cm\right)\)
\(HC=AC-AH=10-3,6=6,4\left(cm\right)\)
c) -Xét △BHA và △HBC:
\(\widehat{BHA}=\widehat{BHC}=90^0\)
\(\widehat{ABH}=\widehat{HCB}\)(△BAH∼△CAB)
\(\Rightarrow\)△BHA∼△CHB (g-g)
a.
Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)
Xét hai tam giác HBA và CDB có:
\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)
b.
Xét hai tam giác AHD và BAD có:
\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)
c.
Áp dụng định lý Pitago cho tam giác vuông BAD:
\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Theo chứng minh câu b:
\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Áp dụng Pitago cho tam giác vuông AHD:
\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC và MN=1/2BC
=>MN=3cm
\(S_{ABC}=\dfrac{1}{2}\cdot8\cdot6=24\left(cm^2\right)\)
b: Xét tứgiác AHBE co
M là trung điểm chung của AB và HE
góc AHB=90 độ
Do đó: AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
Do đó: ABFC là hình thoi
Ta có:
\(S_{MNC}=\dfrac{1}{2}.MN.CH=11\left(cm^2\right)\)
\(\Rightarrow CH=\dfrac{2.11}{MN}=\dfrac{22}{6}=\dfrac{11}{3}\left(cm\right)\)