Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D
góc B > 90 độ
\(\Rightarrow\)cạnh huyền AD lớn nhất => AB < AD (1)
góc ADC > góc B = 90 độ (góc ngoài tại D của tam giác ABD)
=> góc ADC > 90 độ => cạnh huyền AC lớn nhất => AD < AC (2)
Từ (1) và (2), => AB < AD <AC (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:
\(\widehat{BAH}\)=900 - \(\widehat{ABC}\)
\(\widehat{CAH}\)=900 - \(\widehat{ACB}\)
Vì \(\widehat{ABC}>\widehat{ACB}\) (gt) \(\Rightarrow\) \(\widehat{BAH}< \widehat{CAH}\) (1)
Mà BH đối diện với\(\widehat{BAH}\), CH đối diện với \(\widehat{CAH}\) (2)
Từ (1) và (2) \(\Rightarrow\)BH<CH
b) Ta có:
\(\widehat{AMH}\)=900 - \(\widehat{MAH}\)
\(\widehat{AMB}\)=1800 - 900 + \(\widehat{MAH}\)= 900 + \(\widehat{MAH}\)> 900
\(\widehat{ABH}\) phụ với \(\widehat{ABH}\) nên \(\widehat{ABH}\) < 900
\(\Rightarrow\) \(\widehat{AMB}\)>\(\widehat{ABH}\)
Mà AM đối diện với \(\widehat{ABM}\), AB đối diện với \(\widehat{AMB}\)\(\Rightarrow\) AB>AM (3)
- Tương tự, ta cũng có:
\(\widehat{ABH}\)=900 - \(\widehat{BAH}\)
\(\widehat{ABN}\)=1800 - 900 + \(\widehat{BAH}\)= 900 +\(\widehat{BAH}\)>900
\(\widehat{ANB}\) phụ với \(\widehat{NAH}\) nên \(\widehat{ANB}\)< 900
\(\Rightarrow\) \(\widehat{ABN}\)> \(\widehat{ANB}\)
Mà AN đối diện với \(\widehat{ABN}\), AB đối diện với \(\widehat{ANB}\) \(\Rightarrow\) AN>AB (4)
Từ (3) và (4) theo tính chất bắc cầu ⇒ AM<AB<AN (đpcm).
#Châu's ngốc
![](https://rs.olm.vn/images/avt/0.png?1311)
a: HK=12cm
b: Xét ΔIHM vuông tại H và ΔIEM vuông tại E có
IM chung
\(\widehat{HIM}=\widehat{EIM}\)
Do đó:ΔIHM=ΔIEM
c: Ta có: ΔIHM=ΔIEM
nên IH=IE; MH=ME
=>IM là đường trung trực của EH
a, Xét Δ IHK vuông tại H, có :
\(IK^2=IH^2+HK^2\) (định lí Py - ta - go)
=> \(13^2=5^2+HK^2\)
=> \(HK^2=144\)
=> HK = 12 (cm)
b, Xét Δ HIM và Δ EIM, có :
\(\widehat{HIM}=\widehat{EIM}\) (IM là tia phân giác \(\widehat{HIE}\))
IM là cạnh chung
\(\widehat{IHM}=\widehat{IEM}=90^o\)
=> Δ HIM = Δ EIM (g.c.g)
c, Ta có : Δ HIM = Δ EIM (cmt)
=> HI = EI
=> Δ HIE cân tại I
Ta có :
Δ HIE cân tại I
IM là tia phân giác \(\widehat{HIE}\)
=> IM ⊥ EH