Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm
a) Tam giác ABC cân tại A, đường cao AH => H là trung điểm BC.
Xét tam giác BEC có HF song song với BE và đi qua trung điểm BC nên HF = 1/2 BE (ở đây chứng minh hơi cực, bạn tham khảo bài 63 và 64 trang 146 SBT Toán 7 tập một).
Kết hợp với giả thiết => tam giác AHF cân tại H.
b) Ta có ^EBH = ^FHC (do HF // BE), ^EBH = 1/2 ^ABC (BE là tia phân giác ^ABC) và ^ABC = ^HCF (tam giác ABC cân tại A) => ^FHC = 1/2 ^HCF.
c) Ta có ^HFA là góc ngoài tại đỉnh F của tam giác HFC nên ^HFA = ^FHC + ^HCF.
Kết hợp tam giác AHF cân tại H => ^HAC = ^FHC + ^HCF = 1/2 ^HCF + ^HCF = 3/2 ^HCF.
Tam giác AHC vuông tại H => ^HAC + ^HCF = 90 độ hay 3/2 ^HCF + ^HCF = 90 độ => ^HCF = 36 độ.
Từ đây bạn tính các góc còn lại.
Ta có \(\Delta HIK\)\(\Rightarrow\widehat{H}+\widehat{I}+\widehat{K}=180^0\)\(\Rightarrow\widehat{I}+\widehat{K}=180^0-\widehat{H}\)
Mà \(\widehat{H}=80^0\)nên \(\widehat{I}+\widehat{K}=180^0-80^0=100^0\)
\(\Delta HIK\)cân tại H \(\Rightarrow\widehat{I}=\widehat{K}\)
Từ đó \(2\widehat{K}=100^0\)\(\Rightarrow\widehat{K}=50^0\)