K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

vì tam giác ABC đều => AB=BC( tính chất tam giác đều)

Mà AB=BD(gt) => BD=BC( cùng = AB)

=>tam giác BDC cân tại D

=>góc BDC=góc BCD(tính chất tam giác cân)

Vì tam giác ABC đều => góc ABC=ACB=600

Xét góc CBD là góc ngoài tại đỉnh B của tam giác ABC

=> góc CBD=góc BAC + góc ACB( tính chất góc ngoài của tam giác)

=>góc CBD= 600+600=1200

Xét tam giác BDC có:

góc BDC + BCD + CBD = 1800( Định lí tổng 3 góc trong 1 t/giác)

=>2BCD+1200=1800

=>2 BCD=600=>BCD=300

Ta có: góc BCD+ góc ACB=góc ACD

=>góc ACD=600+300=900

=>AC vuông góc với DC

15 tháng 2 2016

mik chỉ hướng dẫn còn bạn tự trình bày nhé

đầu tiên bạn lấy trên tia đối của tia BC điểm E sao cho EB=BC

sau đó bạn dễ dàng chứng minh đc tam giác DBE là tam giác đều và tam giác ABC= tam giác DBE

=> BF=BC

=> BDC cân tại B. mà góc EBD =60 độ( tam giác EBD đều)=> DBC=120 độ (bù với góc EBD)

=> góc BFC=BCF=30 độ. mà góc ACB=60 độ (tam giác abc đều)=> góc ACD=30 độ+60 độ=90 độ

=>AC vuông góc CD(đpcm)

ủng hộ nha

a) Ta có: AD=AB+BD(B nằm giữa A và D)

AC=AE+EC(E nằm giữa A và C)

mà AB=AE(gt)

và BD=CE(gt)

nên AD=AC

Xét ΔADC có AD=AC(cmt)

nên ΔADC cân tại A(Định nghĩa tam giác cân)

b) Xét ΔABE có AB=AE(gt)

nên ΔABE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABE cân tại A(cmt)

nên \(\widehat{ABE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)

Ta có: ΔADC cân tại A(cmt)

nên \(\widehat{ADC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ABE}=\widehat{ADC}\)

mà \(\widehat{ABE}\) và \(\widehat{ADC}\) là hai góc ở vị trí đồng vị

nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: BE//DC(cmt)

BE\(\perp\)AK(gt)

Do đó: AK\(\perp\)DC(Định lí 2 từ vuông góc tới song song)

Ta có: ΔADC cân tại A(cmt)

mà AK là đường cao ứng với cạnh đáy DC(cmt)

nên AK là đường trung trực của DC(Định lí tam giác cân)(Đpcm)

23 tháng 1 2022

a) Ta có: AD=AB+BD(B nằm giữa A và D)

AC=AE+EC(E nằm giữa A và C)

mà AB=AE(gt)

và BD=CE(gt)

nên AD=AC

Xét ΔADC có AD=AC(cmt)

nên ΔADC cân tại A(Định nghĩa tam giác cân)

b) Xét ΔABE có AB=AE(gt)

nên ΔABE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABE cân tại A(cmt)

nên ˆABE=1800−ˆA2ABE^=1800−A^2(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)

Ta có: ΔADC cân tại A(cmt)

nên ˆADC=1800−ˆA2ADC^=1800−A^2(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)

Từ (1) và (2) suy ra ˆABE=ˆADCABE^=ADC^

mà ˆABEABE^ và ˆADCADC^ là hai góc ở vị trí đồng vị

nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: BE//DC(cmt)

BE⊥⊥AK(gt)

Do đó: AK⊥⊥DC(Định lí 2 từ vuông góc tới song song)

Ta có: ΔADC cân tại A(cmt)

mà AK là đường cao ứng với cạnh đáy DC(cmt)

nên AK là đường trung trực của DC(Định lí tam giác cân)

24 tháng 12 2016

A B C D E F p/s:hình ảnh chỉ mang t/c minh họa

a)Xét ΔABD và ΔEBD có:

AB=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

BD:cạnh chung

=> ΔABD=ΔEBD(c.g.c)

=> \(\widehat{BAD}=\widehat{BED}=90^o\)

=> \(DE\perp BC\)

Vì: ΔABD=ΔEBD(cmt)

=>AD=DE

Vì: AB=BE(gt) ; AD=DE(cmt)

=> B,D thuộc vào đường trung trực của đt AE

=>BD là đường trung trực của đt AE

=>\(AE\perp BD\)

b) Xét ΔDEC vuông tại E(cmt)

=> \(DE< DC\)

Mà: DE=AD

=> AD<DC

c)Vì: BF=BA+AF ; BC=BE+EC

Mà: BF=BC(gt); BE=BA(gt)

=>AF=EC

Xét ΔADF và ΔEDC có:

AF=EC(cmt)

\(\widehat{FAD}=\widehat{DEC}=90^o\left(cmt\right)\)

AD=DE(cmt)

=>ΔADF=ΔEDC(c.g.c)

24 tháng 12 2016

.

a: Xét ΔDAB và ΔDEB có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔDAB=ΔDEB

=>góc DEB=90 độ

=>DE vuông góc BC

b: AD=DE

mà DE<DC

nên AD<DC

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC
=>ΔDAF=ΔDEC

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
17 tháng 4 2022

Bạn tự vẽ hình nha

AED + DEC = 180

mà DEC = AEF (tam giác AFE = tam giác DCE)

=> AED + AEF = 180

=> EF và ED là 2 tia đối

=> D , E , F thẳng hàng

15 tháng 12 2023

a: Xét ΔBDE và ΔBCE có

BD=BC

\(\widehat{DBE}=\widehat{CBE}\)

BE chung

Do đó: ΔBDE=ΔBCE

b: Ta có: ΔBDE=ΔBCE

=>ED=EC

=>E nằm trên đường trung trực của DC(1)

Ta có: BD=BC

=>B nằm trên đường trung trực của CD(2)

Ta có: KD=KC

=>K nằm trên đường trung trực của CD(3)

Từ (1),(2),(3) suy ra B,E,K thẳng hàng

=>B,E,K cùng nằm trên đường trung trực của DC

=>EK\(\perp\)DC

c: ΔAHD vuông tại H có \(\widehat{DAH}=45^0\)

nên ΔAHD vuông cân tại H

Xét ΔBDC có BD=BC

nên ΔBCD cân tại B

mà \(\widehat{BDC}=45^0\)

nên ΔBCD vuông cân tại B

=>\(\widehat{ABC}=90^0\)

 

DD
20 tháng 7 2021

a) Xét tam giác \(ABD\)và tam giác \(EBD\)có: 

\(AB=EB\)

\(\widehat{ABD}=\widehat{EBD}\)

\(BD\)cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEB}=\widehat{DAB}=90^o\)

do đó \(DE\perp BC\).

\(DE=DA\Rightarrow D\)thuộc đường trung trực của \(AE\).

\(BA=BE\)suy ra \(B\)thuộc đường trung trực của \(AE\).

Do đó \(BD\)là đường trung trực của \(AE\)nên \(AE\)vuông góc với \(BD\).

b) \(AD=DE< DC\)(cạnh góc vuông nhỏ hơn cạnh huyền) 

c) Xét tam giác \(ADF\)và tam giác \(EDC\)có: 

\(DA=DE\)

\(CE=FA\)

\(\widehat{DAF}=\widehat{DEC}\left(=90^o\right)\)

\(\Rightarrow\Delta ADF=\Delta EDC\left(c.g.c\right)\)

d) \(\Delta ADF=\Delta EDC\)suy ra \(\widehat{CDE}=\widehat{ADF}\)mà hai góc này ở vị trí đối đỉnh nên \(E,D,F\)thẳng hàng. 

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.a.Chứng minh BA=BIb.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đềuc.Tính các góc của tam giác BCKCho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại...
Đọc tiếp

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

0