Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy ^ABM = ^BAC = ^ACN = 60o => AB//CN và AC//BM => tg ACN ~ tg MBA (*)
Ta có: BM/BC = BM/AB = AC/CN (do (*)) = BC/CN (1)
Hơn nữa dễ thấy ^MBC = ^BCN = 120o (2)
Từ (2) và (3) => tg MBC ~ tg BCN (**)
b) Ta có ^MEB = ^AEB = ^ACB = 60o (3)
^MFB = ^FBC + ^FCB = ^FMB + ^FCB (do (**) = 180o - ^MBC = 180o - 120o = 60o (4)
Từ (3) và (4) => BMEF nội tiếp (***)
c) EF cắt BC tại P và cắt (O) tại Q
Ta có sđ cung ^EFN = ^BMA ( do (***)) = ^CAN ( do (*)) = ^CAE = ^CQE => CQ//FB
Mà theo câu b) thì ^BFC = 60p = ^BQC => BQ//FC
=> BFCQ là hình bình hành => P là trung điểm BC => EF đi qua trung điểm P cố định của BC
copy trên trang nayf mà cũng đăng lên https://vn.answers.yahoo.com/question/index?qid=20140214004437AAlhT8o
a: góc ABN=góc ACB=góc ABC=góc ACN=60 độ
=>AC//MB
góc NMB=góc NAC
góc MAB=góc ANC
=>ΔCAN đồng dạng với ΔBNA
b: BC/MB=CN/MB
góc MBC=góc BCN=120 độ
=>ΔMBC đồng dạng với ΔBCN
=>góc BCN=góc CBN
=>góc BFM=góc BCM+góc FBC
=>góc BCM+góc CBM=180 độ-góc MBC=60 độ
góc BEM=góc BAC=60 độ
=>góc BEM=góc BFM
=>BMEF nội tiếp