Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABC đều => ABC = BAC = BCA = 60o (1)
Vì ME // AB (gt) => ABC = EMC (2 góc đồng vị) (2)
Vì MF // AC (gt) => ACB = FMB (2 góc đồng vị) (3)
Từ (1), (2) và (3) => EMC = FMB = ABC = ACB
Xét △FMB có: FBM = FMB (cmt) => △FMB cân tại F mà FBM = 60o (cmt) => △FMB đều => FB = MB = FM
Xét △MEC có: ECM = EMC (cmt) => △MEC cân tại E mà ECM = 60o (cmt) => △MEC đều => ME = MC = EC
Ta có: BME = BMF + FME
CMF = CME + FME
Mà EMC = FMB (cmt)
=> BME = CMF
Xét △BME và △FMC
Có: BM = FM (cmt)
BME = FMC (cmt)
ME = MC (cmt)
=> △BME = △FMC (c.g.c)
a) Ta có: góc ^ADC=180* -(^CAD+^C)
^BDA=180*-(^BAD+^B)
mà ^CAD=^BAD(giả thiết)
^C=^B(giả thiết)
--> ^ADC=^BDA
lại có:
^CAD=^BAD(gt)
AD chung
--> tam giác ABD=tam giác ACD
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b:Sửa đề: Chứng minh AE=AF
Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
Ta có: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>AE=AF
c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
nên EF//BC
d: Xét ΔABN vuông tại B và ΔACN vuông tại C có
AN chung
AB=AC
Do đó: ΔABN=ΔACN
=>BN=CN
=>N nằm trên đường trung trực của BC(1)
Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,N thẳng hàng
Xét ΔBME và ΔFMC có
BM=FM
ME=MC
BE=FC
Do đó:ΔBME=ΔFMC