Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm chung của AB và EC
nên AEBC là hình bình hành
=>AE//BC và AE=BC
=>AD//AE và AD=AE
=>A là trung điểm của DE
Hình Tự Vẽ Nhe
a)
Áp dụng định lí PItago vào tam giác ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=13^2-5^2=12\left(cm\right)\)
b)
Tứ Giác ABCE có:
D là trung điểm của AC (gt)
D là trung điểm của BE ( E đối xứng B qua A )
=> Tứ Giác ABCE là Hình Bình Hành
c)
Ta có:
Vì tứ giác ABCE là hình bình hành => CE=AB; CE//AB ( tính chất hình bình hành ) (1)
Mà M đối xứng với B qua A => AM=AB (2)
CE//AB (cmt) => CE//AM (3)
Từ (1) và (2) (3) => CE//AM và CE=AM
Tứ Giác AMEC có:
CE=AM (cmt)
CE//AM (cmt)
Góc A = 90 độ (gt)
=> Tứ giác AMEC là Hình Chữ Nhật
a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)
mà góc EBF =90 => góc DEB =90 (1)
Chứng minh tương tự với DF//AB
\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\) (2)
Từ (1) và (2) => tứ giác BEDF là hình chữ nhật
a) vì ED//BC và DF//AB
Mà \(\Delta ABC\)vuông tại B
Nên \(DE\perp AB\)và \(DF\perp BC\)
Xét tứ giác BEDF có:
\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)
Vậy tứ giác BEDF là hình chữ nhật
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}
Vì ∆ABC đều
=> AB = AC = BC = 5cm
Mà D là điểm đối xứng của C qua d
=> AB = AC = BC = AD = 5cm
Mà DA + AC = 5 + 5 = 10cm