Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
Do đó ADHE là tứ giác nội tiếp
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>ADHE nội tiếp (O), O là trung điểm của AH
b: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
=>BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>BEDC nội tiếp (F)
Gọi giao của AH với BC là M
Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH vuông góc BC tại M
\(\widehat{OEF}=\widehat{OEC}+\widehat{FEC}\)
\(=\widehat{AOE}+\widehat{ECB}\)
\(=\widehat{AOE}+\widehat{EAO}=90^0\)
=>FE là tiếp tuyến của (O)
c: ΔDAB vuông tại D có DM là trung tuyến
nên DM=MA=MB
ΔDHC vuông tại D có DI là trung tuyến
nên IH=ID=IC và ΔDHC nội tiếp đường tròn (I)
\(\widehat{MDI}=\widehat{MDB}+\widehat{IDB}\)
\(=\widehat{MBD}+\widehat{IHD}\)
\(=\widehat{MBD}+\widehat{EHB}=90^0\)
=>MD là tiếp tuyến của (I)
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
b: Gọi O là trung điểm của AH
ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>ADHE nội tiếp (O)
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH vuông góc BC tại M
ΔABC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Xét tứ giác BEHM có
\(\widehat{BEH}+\widehat{BMH}=180^0\)
=>BEHM là tứ giác nội tiếp
\(\widehat{OEM}=\widehat{OEH}+\widehat{MEH}\)
\(=\widehat{OHE}+\widehat{MBD}\)
\(=\widehat{MHC}+\widehat{MBD}=90^0-\widehat{MCH}+\widehat{MBD}=90^0\)
=>EM là tiếp tuyến của (O)