K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có

DH chung

góc EDH=góc IDH

=>ΔDEH=ΔDIH

b: DE=DI

HE=HI

=>DH là trung trực của EI

c: EH=HI

HI<HF

=>EH<HF

d: Xét ΔDFK có

KI,.FE là đường cao

KI cắt FE tại H

=>H là trực tâm

=>DH vuông góc KF

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của EF

hay EH=FH

b: EH=FH=EF/2=3(cm)

Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)

nên DH=4(cm)

c: Xét ΔDEM và ΔDFN có

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: \(\widehat{DEM}=\widehat{DFN}\)

d: Xét ΔNEH và ΔMFH có 

NE=MF

\(\widehat{E}=\widehat{F}\)

EH=FH

Do đó: ΔNEH=ΔMFH

Suy ra: HN=HM

hay H nằm trên đường trung trực của MN(1)

Ta có: KM=KN

nên K nằm trên đường trung trực của MN(2)

Ta có: DN=DM

nên D nằm trên đường trung trực của MN(3)

Từ (1), (2) và (3) suy ra D,H,K thẳng hàng

14 tháng 2 2022

a. xét tam giác DHE và tam giác DHF, có:

D: góc chung

DE = DF ( DEF cân )

DH: cạnh chung

Vậy tam giác DHE = tam giác DHF ( c.g.c )

=> HE = HF ( 2 cạnh tương ứng )

b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm

áp dụng định lý pitago vào tam giác vuông DHE, có:

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

c.xét tam giác DEM và tam giác DFN có:

DE = DF ( DEF cân )

DM = DN ( gt )

D: góc chung

Vậy tam giác DEM = tam giác DFN ( c.g.c )

=> góc DEM = góc DFN ( 2 góc tương ứng )

d.xét tam giác DKM và tam giác DKN, có:

DM = DN ( gt )

D: góc chung

DK: cạnh chung

Vậy tam giác DKM = tam giác DKN ( c.g.c )

=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )

=> DK vuông BC

Mà DH cũng vuông BC

=> D,H,K thẳng hàng

Chúc bạn học tốt!!!

24 tháng 12 2020

a) Xét △DEM và △KFM có

DM=KM(giả thiết)

góc DME=góc KMF(2 góc đối đỉnh)

EM=MF(Vì M là trung điểm của EF)

=>△DEM =△KFM(c-g-c)

=> góc MDE=góc MKF (2 góc tương ứng)

hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF

=>DE//KF

b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ

Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có

HD=HP

HE là cạnh chung

=>   △DHE= △PHE(2 cạnh góc vuông)

=> góc DEM=góc PEM

=> EH là tia phân giác của góc DEP 

   hay EF là tia phân giác của góc DEP 

vậy EF là tia phân giác của góc DEP 

 

 

 

 

 

1: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của FE

hay HE=HF

EF=8cm

nên HE=4cm

=>DH=3cm

2: Xét ΔDEM và ΔDFN có 

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: EM=FN

3: Xét ΔNEF và ΔMFE có 

NE=MF

\(\widehat{NEF}=\widehat{MFE}\)

FE chung

Do đó:ΔNEF=ΔMFE

Suy ra: \(\widehat{KFE}=\widehat{KEF}\)

=>ΔKEF cân tại K

hay KE=KF

4: Ta có: DE=DF

nên D nằm trên đường trung trực của EF(1)

ta có: KE=KF

nên K nằm trên đường trung trực của EF(2)

ta có: HE=HF

nên H nằm trên đường trung trực của EF(3)

Từ (1), (2) và (3) suy ra D,K,H thẳng hàng

21 tháng 3 2022

a, Ta có: DH là đường cao trong tam giác cân DEF

⇒DH vừa là đường cao, vừa là đường trung tuyến trong tam giác cân DEF

⇒HE=HF 

Ta có: HE=HF=EF/2=8/2=4 (cm)

Xét ΔDHE vuông tại H

Theo định lý Pi-ta-go, ta có:

DF²=DH²+HF²

⇒DH²=DF²-HF²

⇒DH²=5²-4²

⇒DH²=9

⇒DH=√9=3 (cm)

b, Xét ΔDME và ΔDNF có:

DM=DN (GT)

A là góc chung

DE=DF (GT)

⇒ ΔDME=ΔDNF (c.g.c)

⇒EM=FN (2 cạnh tương ứng)

    DEM=DFN (2 góc tương ứng)

c, Ta có: E=F (GT)

và DEM=DFN (cmt)

⇒KEF=KFE 

⇒ΔKEF cân tại K

⇒KE=KF

d, Ta có: DH⊥EF và HE=HF

⇒DH là đường trung trực của EF

mà KE=KF

⇒K là điểm thuộc đường trung trực DH

⇒D, K, H thẳng hàng

21 tháng 3 2022

cảm ơn bạn

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)