K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
27 tháng 11 2017
Lời giải:
Từ giả thiết đề bài suy ra $M$ là trung điểm của $BD$ và $N$ là trung điểm của $EC$
Xét tứ giác $ADCB$ có hai đường chéo $AC$ và $BD$ cắt nhau tại trung điểm $M$ nên $ADCB$ là hình bình hành:
\(\Rightarrow AD=BC(1)\)
Xét tứ giác $AEBC$ có hai đường chéo $AB$ và $CE$ cắt nhau tại trung điểm $N$ của mỗi đường nên $AEBC$ là hình bình hành
\(\Rightarrow AE=BC(2)\)
a) Từ (1),(2) suy ra \(AD=AE\)
b) Vì \(ADCB,AEBC\) là hình bình hành nên \(AE\parallel BC, AD\parallel BC\Rightarrow A,E,D\) thẳng hàng
Mà \(AE=AD\) (theo phần a) nên $A$ là trung điểm của $ED$
Do đó ta có đpcm.