K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

bạn tự vẽ hình nha!Nên sửa DQEF thành DQEP.

a,tứ giác DQEP có:ME=MD,MQ=MP nên DQEP là hình bình hành.

Lại có:DE vuông góc với QP nên hình bình hành DQEP là hình thoi.

b,DQEP là hình thoi nên EP song song với DQ mà FK song song với PE nên DQ song song với FK(1)

Lại có:DF và QK cùng vuông góc với DM  nên DF song song với QK(2).

Từ (1) và (2) suy ra DFKQ là hình bình hành

19 tháng 11 2017

Ai giải chi tiết dc ko

13 tháng 11 2020

tự kẻ hình nha

a) Vì M là trung điểm AB, PM=MQ, P,M,Q thẳng hàng=> M là trung điểm PQ

=>PQ giao AB tại trung điểm mỗi đường=> APBQ là hbh mà AB vuông góc với PQ=> APBQ là hình thoi

b) vì APBQ là hình thoi=> PB//AQ mà PB//CE=> CE//AQ (1)

ta có PQ vuông góc với AB

AC vuông góc với AB

=> AC//PQ=> EQ//AC ( PQ cắt đường thẳng // với PB tại E=> E thuộc PQ)(2)

từ (1);(2)=> ACEQ là hbh

c) 1) trong tam giác ABC có 

MN //AC( N thuộc MP)

AM=MB

=> MN là đtb của tam giác => MN=AC/2=> AC=2MN

2) Vì AC=2MN=> AC=6cm

MN là đtb=> CN=BN 

tam giác ABC vuông tại A

=> AN=BN=CN=BC/2( tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)

=> BC=2AN=10cm 

vì tam giác ABC vuông tại A=> AB^2+AC^2=BC^2

=> AB^2=100-36

=> AB=8 (AB>0)

=> chu vi tam giác ABC là 6+8+10=24(cm)

30 tháng 10 2021

a: Xét ΔDEB có

P là trung điểm của DE

Q là trung điểm của BE

Do đó: PQ là đường trung bình của ΔDEB

Suy ra: PQ//DB và \(PQ=\dfrac{DB}{2}\left(1\right)\)

Xét ΔDCB có 

N là trung điểm của CD

M là trung điểm của BC

Do đó: NM là đường trung bình của ΔDCB

Suy ra: NM//DB và \(NM=\dfrac{DB}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//PQ và NM=PQ

hay NMQP là hình bình hành

30 tháng 12 2021

a: Xét ΔDEF có

M là trung điểm của FE

P là trung điểm của DF

Do đó: MP là đường trung bình

23 tháng 12 2021

a/ Xét tứ giác DPMQ có

EDF=MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o

=> Tứ giác DPMQ là hcn

b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF

c/ Có I đx M qua DE

=> DE là đường t/trực của IM

=> DI = DM (1)

=> t/g DIM cân tại D có DE là đường trung trực

=> DE đồng thời là đường pg

=> ˆIDE=ˆEDMIDE^=EDM^ (2) 

CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)

Từ (2) ; (4)

=> ∠IDE+EDF+KDF=IDK=180oIDE^+EDF^+KDF^=IDK^=180o

=> I,D,K thẳng hàng 

Từ (1) ; (3)=> ID = DK

Do đó D là trđ IK

=> I đx K qua D

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua Ia) Chứng minh tứ...
Đọc tiếp

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.

Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.

Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.

Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I

a) Chứng minh tứ giác DKEH là hình chữ nhật.

b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.

c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.

Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K

a) Chứng minh tứ giác MEFK là hình bình hành.

b) Biết MN=5 cm. Tính độ dài EF?

Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.

a) Tứ giác HIAB là hình gì ? Vì sao?

b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.

c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.

0
26 tháng 12 2021

a: DQ=2,5cm