K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

140

26 tháng 1 2017

140o, kẻ thêm DE và CD

DD
20 tháng 7 2021

Câu 3. 

Tam giác \(ABC\)vuông cân tại \(A\)nên \(\widehat{ACB}=45^o\).

Tam giác \(BCD\)vuông cân tại \(B\)nên \(\widehat{BCD}=45^o\).

\(\widehat{ACD}=\widehat{ACB}+\widehat{BCD}=45^o+45^o=90^o\)

\(\Rightarrow AC\perp CD\)

mà \(AC\perp AB\)

nên \(AB//CD\)

suy ra \(ABCD\)là hình thang vuông. 

DD
20 tháng 7 2021

Câu 4. 

Kẻ \(BE\perp CD\)khi đó \(\widehat{BED}=90^o\).

Tứ giác \(ABED\)có \(4\)góc vuông nên là hình chữ nhật, mà \(AB=AD\)nên \(ABED\)là hình vuông. 

\(BE=DE=AB=2\left(cm\right)\)

\(EC=CD-DE=4-2=2\left(cm\right)\)

Suy ra tam giác \(BEC\)vuông cân tại  \(E\)

Suy ra \(\widehat{EBC}=\widehat{ECB}=45^o\)

\(\widehat{ABC}=\widehat{ABE}+\widehat{EBC}=90^o+45^o=135^o\)

11 tháng 8 2016

Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết,  dhnb:dấu hiệu nhận biết,   đ/n:định nghĩa,   cmt:chứng minh trên,   t/c: tính chất

3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.

         tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.

mà góc EAC và góc ACB ở vị trí so le trong.

Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.

b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.

Có: góc ABC= 45 độ (cmt).

tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.

Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với                                                                                 cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]

                                                                         => AD vông góc với BC. [đây là điều thứu hai suy ra được]

Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.

Xét  tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)

                                                                                       12   +  12    =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.

12 tháng 10 2021

QUỲNH LỚP 7C TRƯỜNG VÕ NGUYÊN GIẤP HẢ

 

28 tháng 7 2023

mik lm nếu bn like =)

28 tháng 7 2023

Bài 4:
a) Ta có tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc CAE + góc BAC = 90 độ, tức là EC vuông góc với BC.

b) Vì tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc BAE = góc BAC + góc CAE = 45 độ + 45 độ = 90 độ. Do đó, tứ giác ABCE là tứ giác vuông.

Bài 5:
a) Gọi K là giao điểm của đường thẳng AM và BH. Ta cần chứng minh góc BAK = góc CAK.
Vì CM = CA, ta có góc CMA = góc CAM. Vì đường thẳng AM song song với CA, nên góc CMA = góc KAB (do AB cắt đường thẳng AM tại I). Từ đó suy ra góc CAM = góc KAB.
Vì AH là đường cao, nên góc BAH = góc CAH. Từ đó suy ra góc BAK = góc CAK.
Vậy, AM là phân giác của góc BAH.

b) Ta có AB + AC = AB + AH + HC = BH + HC > BC (theo bất đẳng thức tam giác).
Vậy, luôn luôn có AB + AC < AH + BC.