Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự chứng minh
b, HS tự chứng minh
c, HS tự chứng minh
d, ∆MIH:∆MAB
=> M H M B = I H A B = 2 E H 2 F B = E H F B
=> ∆MHE:∆MBF
=> M F A ^ = M E K ^ (cùng bù với hai góc bằng nhau)
=> KMEF nội tiếp => M E F ^ = 90 0
ΔCID vuông tại I
=>\(CI^2+ID^2=CD^2\)
=>\(DI=\sqrt{6^2-3.6^2}=4.8\left(cm\right)\)
Kẻ AH vuông góc BC
=>AH//DI
Xét ΔCAH có DI//AH
nên \(\dfrac{DI}{AH}=\dfrac{CD}{CA}=\dfrac{1}{2}\)
=>\(AH=9.6\left(cm\right)\)
ΔAHB vuông tại H
=>\(AB^2=AH^2+HB^2\)
=>\(HB=\sqrt{16^2-9.6^2}=12.8\left(cm\right)\)
ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(HC=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)
BC=BH+CH
=12,8+7,2
=20(cm)
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A