Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời 2 câu đầu nha, 2 câu sau tí nữa mình viết sau
a, \(\Delta ABC\)cân tại A có: AH là đường cao của \(\Delta ABC\)\(\Rightarrow\)AH là trung tuyến của \(\Delta ABC\)\(\Rightarrow BH=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(\Delta ABH\)có \(\widehat{AHB}=90^o\)
\(\Rightarrow AB^2=AH^2+BH^2\)(định lý Py-ta-go)
hay \(10^2=AH^2+6^2\)
\(AH^2=64\)
\(AH=8\left(cm\right)\)
b, \(\Delta ABC\)có: \(HD//AC\left(gt\right)\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow BD=DA\)
\(\Delta ABH\)vuông tại H có: HD là trung tuyến của \(\Delta ABH\)\(\Rightarrow HD=BD=DA=\frac{AB}{2}\)
\(\Delta BDH\)có: \(HD=BD\left(cmt\right)\)\(\Rightarrow\Delta BDH\)cân tại D
c, Nối D với C, H với E
Ta có: \(HD=BD\left(cmt\right)\\ BD=CE\left(gt\right)\)\(\Rightarrow HD=CE\)
Tứ giác DHEC có: \(HD//EC\left(gt\right)\\ HD=EC\left(cmt\right)\)\(\Rightarrow\)DHEC là hình bình hành \(\Rightarrow\)2 đường chéo DE và HC cắt nhau tại trung điểm của mỗi đường \(\Rightarrow\)I là trung điểm của DE
d,
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Xét hình bình hành BFCE có D là trung điểm EF ,D là trung điểm của BC
Mà 2 đường chéo BC EF cắt nhau tại D =>BFCE là hình bình hành(dấu hiệu nhận Bt)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình tự vẽ nha :
a)
Ta có : HI \(\perp\)AB => AI \(\perp\)IH
<=> AI là đường cao của tam giác AEH
Mà : EI = IH ( gt )
=> tam giác AEH cân tại A
=> AE = AH
b) chứng minh tương tự như câu (a)
E ở đâu có vậy bạn