Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét (O) có
ΔABC nội tiếp đường tròn(gt)
nên O là giao điểm ba đường trung trực của ΔABC
hay AO là đường trung trực của BC
⇒AO⊥BC
Ta có: AO⊥BC(cmt)
AO⊥AE(AE là tiếp tuyến có A là tiếp điểm của (O))
Do đó: AE//BC(Định lí 1 từ vuông góc tới song song)
2) Xét ΔADE và ΔCDB có
\(\widehat{ADE}=\widehat{CDB}\)(hai góc đối đỉnh)
DA=DC(D là trung điểm của AC)
\(\widehat{DAE}=\widehat{DCB}\)(hai góc so le trong, AE//BC)
Do đó: ΔADE=ΔCDB(c-g-c)
⇒AE=CB(hai cạnh tương ứng)
Xét tứ giác ABCE có
AE//CB(cmt)
AE=CB(cmt)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
A B C F D O I E 1 1 1
a) Xét tứ giác ABOC có: \(\widehat{ABO}=\widehat{ACO}=90^{\sigma}\left(gt\right)\Rightarrow\widehat{ABO}+\widehat{ACO}=180^{\sigma}\)
=> tứ giác ABOC nội tiếp
b) Ta có: OB = OC = R
AB = AC(tính chất 2 tiếp tuyến cắt nhau)
=> OA là đường trung trực của BC
=> BC vuông góc OA
Xét tam giác OBA và tam giác BEA có
\(\widehat{OBA}=\widehat{BEA}=90^{\sigma}\)
\(\widehat{OAB}chung\)
\(\Rightarrow\Delta OBA\)đồng dạng \(\Delta BEA\left(g.g\right)\)
\(\Rightarrow\frac{OB}{BE}=\frac{BA}{EA}\Rightarrow BA.BE=AE.BO\)
c) Xét tứ giác OIBD có \(\widehat{OID}=\widehat{OBD}=90^{\sigma}\), cùng nhìn CD
=> tứ giác OIBD nội tiếp
=> \(\widehat{IDO}=\widehat{IBO}=\frac{1}{2}sđ\widebat{IO}\left(gnt\right)\)
Mà \(\Delta OBC\)cân ( OB = OC = R) \(\Rightarrow\widehat{IBO}=\widehat{BCO}\)
\(\Rightarrow\widehat{IDO}=\widehat{BCO}\)
Chứng minh tương tự tứ giác ABOC được tứ giác OIFC nội tiếp \(\Rightarrow\widehat{OFI}=\widehat{BCO}=\frac{1}{2}sđ\widebat{OI}\left(gnt\right)\)
\(\widehat{IDO}=\widehat{OFI}\Rightarrow\Delta DOF\)cân tại O
d) Tam giác DOF cân có OI là đường cao => OI đồng thời là đường trung tuyến => ID = IF
Xét tam giác IBD và tam giác IEF có:
IB = ID ( I là trung điểm BE)
góc BID = góc EIF ( đối đỉnh)
ID = IB (cmt)
=> tam giác IBD = tam giác EIF (c.g.c)
=> góc IDB = góc IFE
=> DB // EF hay EF//AB
XÉT tam giác CBA có E là trung điểm BC và EF//AB => EF là đường trung bình của tam giác CBA
=> F là trung điểm AC
1: AB=AC
OB=OC
Do đó; AO là trung trực của BC
=>AO vuông góc với BC
=>BC//AE
2: Xét ΔDAE và ΔDCB có
góc DAE=góc DB
DA=DC
góc ADE=góc CDB
Do đó: ΔDAE=ΔDCB
=>AE=CB
Xét tứ giác ABCE có
AE//BC
AE=BC
DO đó; ABCE là hình bình hành