K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Xét (O) có 

ΔABC nội tiếp đường tròn(gt)

nên O là giao điểm ba đường trung trực của ΔABC

hay AO là đường trung trực của BC

⇒AO⊥BC

Ta có: AO⊥BC(cmt)

AO⊥AE(AE là tiếp tuyến có A là tiếp điểm của (O))

Do đó: AE//BC(Định lí 1 từ vuông góc tới song song)

2) Xét ΔADE và ΔCDB có 

\(\widehat{ADE}=\widehat{CDB}\)(hai góc đối đỉnh)

DA=DC(D là trung điểm của AC)

\(\widehat{DAE}=\widehat{DCB}\)(hai góc so le trong, AE//BC)

Do đó: ΔADE=ΔCDB(c-g-c)

⇒AE=CB(hai cạnh tương ứng)

Xét tứ giác ABCE có 

AE//CB(cmt)

AE=CB(cmt)

Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

 

13 tháng 11 2021

a: Ta có: BC⊥AH

AH⊥AE

Do đó: BC//AE

13 tháng 11 2021

Sai rồi, NGU thì CHẾT đi.

1 tháng 6 2019

A B C F D O I E 1 1 1

a) Xét tứ giác ABOC có: \(\widehat{ABO}=\widehat{ACO}=90^{\sigma}\left(gt\right)\Rightarrow\widehat{ABO}+\widehat{ACO}=180^{\sigma}\)

=> tứ giác ABOC nội tiếp

b) Ta có: OB = OC = R

                AB = AC(tính chất 2 tiếp tuyến cắt nhau)

=> OA là đường trung trực của BC

=> BC vuông góc OA

Xét tam giác OBA và tam giác BEA có

\(\widehat{OBA}=\widehat{BEA}=90^{\sigma}\)

\(\widehat{OAB}chung\)

\(\Rightarrow\Delta OBA\)đồng dạng \(\Delta BEA\left(g.g\right)\)

\(\Rightarrow\frac{OB}{BE}=\frac{BA}{EA}\Rightarrow BA.BE=AE.BO\)

c) Xét tứ giác OIBD có \(\widehat{OID}=\widehat{OBD}=90^{\sigma}\), cùng nhìn CD

=> tứ giác OIBD nội tiếp

=> \(\widehat{IDO}=\widehat{IBO}=\frac{1}{2}sđ\widebat{IO}\left(gnt\right)\)

Mà \(\Delta OBC\)cân ( OB = OC = R) \(\Rightarrow\widehat{IBO}=\widehat{BCO}\)

\(\Rightarrow\widehat{IDO}=\widehat{BCO}\)

Chứng minh tương tự tứ giác ABOC được tứ giác OIFC nội tiếp \(\Rightarrow\widehat{OFI}=\widehat{BCO}=\frac{1}{2}sđ\widebat{OI}\left(gnt\right)\)

\(\widehat{IDO}=\widehat{OFI}\Rightarrow\Delta DOF\)cân tại O

d) Tam giác DOF cân có OI là đường cao => OI đồng thời là đường trung tuyến => ID = IF

Xét tam giác IBD và tam giác IEF có:

IB = ID ( I là trung điểm BE)

góc BID = góc EIF ( đối đỉnh)

ID = IB (cmt)

=> tam giác IBD = tam giác EIF (c.g.c)

=> góc IDB = góc IFE

=> DB // EF hay EF//AB

XÉT tam giác CBA có E là trung điểm BC và EF//AB => EF là đường trung bình của tam giác CBA

=> F là trung điểm AC

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0