K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2021

+) Ta có: ^ACD = ^ACB + ^BCD; ^AEC = ^ABC + ^BAD

Mà ^ACB = ^ABC (∆ABC cân tại A); ^BCD = ^BAD (hai góc nội tiếp cùng chắn một cung)

nên ^ACD = ^AEC (1)

+) Dễ có: ∆AEB ~ ∆CED (g.g) nên \(\frac{AB}{CD}=\frac{AE}{CE}=\frac{AC}{CD}\)(2)

Từ (1) và (2), ta có: ^ACD = ^AEC và \(\frac{AE}{CE}=\frac{AC}{CD}\)nên ∆AEC ~ ACD (c.g.c)

\(\Rightarrow\frac{AC}{AD}=\frac{AE}{AC}\Rightarrow AC^2=AE.AD\)(đpcm)

22 tháng 2 2021

vì AB =AC => sđ cung AB = sđ cung AC 

=> 1/2 ( sđ CD + sđ AB ) =1/2 ( sđ CD + sđ AC ) 

=> AEB = 1/2 sđ AD =ABD 

CM tam giác ABD ~ tam giác AEB ( g-g) => AC^2 = AD.AE 

a, Xét tứ giác HFEB có:

\(\widehat{FHB}+\widehat{FEB}=90+90=180^0\) 

--> Tứ giác HFEB nội tiếp

b, Dùng hệ thức lượng trong \(\Delta ABC\) vuông

\(AC^2=AH.AB\) 

Mà \(\Delta AHF=\Delta AEB\left(tự.chứng.minh\right)\left(g-g\right)\) 

\(\Rightarrow\dfrac{AH}{AE}=\dfrac{AF}{AB}\Rightarrow AH.AB=AE.AF\\ \Rightarrow AC^2=AE.AF\) 

c, Ta có AICK là tứ giác nội tiếp \(\left(\widehat{ACK}+\widehat{IKA}=180^0\right)\) 

\(\widehat{IKb}+\widehat{IEB}=180^0\\ \Rightarrow\widehat{AIK}+\widehat{EIK}=\widehat{EIK}+\widehat{EBA}=180^0\\ \Rightarrow\widehat{AIK}=\widehat{EBA}\\ \Rightarrow\widehat{ACK}=\widehat{EBA}\\ Tương.tự.ta.có:\widehat{CAO}=\widehat{KEB}\\ \Rightarrow\Delta ACK=\Delta EBK\left(g-g\right)\) 

\(\rightarrow\dfrac{AC}{EB}=\dfrac{CK}{KB}=\dfrac{AK}{EK}\Rightarrow EK.CK=AK.KB\\ =\dfrac{\left(EK+KC\right)^2}{4}=\dfrac{\left(AK+KB\right)^2}{4}=\dfrac{AB^2}{4}\\ \Rightarrow EK+KC=AB\\ Dấu"="\Leftrightarrow\\ EA=KC\Rightarrow\Delta CKE.cân.tại.K\\ \Rightarrow Sđ\widehat{BE}=Sđ\widehat{AC}\\ \Rightarrow E\in\widehat{BC}.sao.cho.Sđ\widehat{BE}=Sđ\widehat{AC}.hay.BE=AC\)

4 tháng 2 2022

1. Xét tam giác AEB có: AB là đường kính \(\Rightarrow\Delta AEB\) vuông tại E

Xét tứ giác HFEB có: \(\left\{{}\begin{matrix}\widehat{FHB}=90^o\\\widehat{FEB}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{FHB}+\widehat{FEB}=180^o\) 

\(\Rightarrow\)Tứ giác HFEB nội tiếp đường tròn (đpcm)

2. Xét tam giác ABC có: đường kính AB \(\Rightarrow\Delta ABC\) vuông tại C

\(\Rightarrow AC^2=AH.AB\)

Mà \(\Delta AHF\sim\Delta AEB\) \(\Rightarrow AC^2=AF.AE\) (đpcm)

3. Câu này mình chịu @@

22 tháng 6 2021

1) Vì AB là đường kính \(\Rightarrow\angle AMB=90\)

\(\Rightarrow\angle EHB+\angle EMB=90+90=180\Rightarrow EMBH\); nội tiếp

b) Vì AB là đường kính \(\Rightarrow\angle ACB=90\)

\(\Rightarrow\Delta ACB\) vuông tại C có \(CH\bot AB\Rightarrow AC^2=AH.AB\) (hệ thức lượng)

Xét \(\Delta AEH\) và \(\Delta ABM:\) Ta có: \(\left\{{}\begin{matrix}\angle AHE=\angle AMB=90\\\angle MABchung\end{matrix}\right.\)

\(\Rightarrow\Delta AEH\sim\Delta ABM\left(g-g\right)\Rightarrow\dfrac{AE}{AB}=\dfrac{AH}{AM}\Rightarrow AE.AM=AH.AB\)

\(\Rightarrow AE.AM=AC^2\Rightarrow\dfrac{AE}{AC}=\dfrac{AC}{AM}\)

Xét \(\Delta ACE\) và \(\Delta AMC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AC}{AM}\\\angle MACchung\end{matrix}\right.\)

\(\Rightarrow\Delta ACE\sim\Delta AMC\left(c-g-c\right)\Rightarrow\dfrac{AE}{AC}=\dfrac{CE}{CM}\Rightarrow AE.CM=AC.EC\)

undefined

22 tháng 1 2021

giúp mình với

 

Bạn xem lại đề, AD đâu có bằng AB đâu mà góc AEB= góc ABD

Link đây bạn xem thử

http://pitago.vn/question/tam-giac-abc-noi-tiep-duong-tron-tam-o-cac-diem-m-n-p-la-3440.html

Học tốt nhé