Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác HFEB có:
\(\widehat{FHB}+\widehat{FEB}=90+90=180^0\)
--> Tứ giác HFEB nội tiếp
b, Dùng hệ thức lượng trong \(\Delta ABC\) vuông
\(AC^2=AH.AB\)
Mà \(\Delta AHF=\Delta AEB\left(tự.chứng.minh\right)\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{AE}=\dfrac{AF}{AB}\Rightarrow AH.AB=AE.AF\\ \Rightarrow AC^2=AE.AF\)
c, Ta có AICK là tứ giác nội tiếp \(\left(\widehat{ACK}+\widehat{IKA}=180^0\right)\)
\(\widehat{IKb}+\widehat{IEB}=180^0\\ \Rightarrow\widehat{AIK}+\widehat{EIK}=\widehat{EIK}+\widehat{EBA}=180^0\\ \Rightarrow\widehat{AIK}=\widehat{EBA}\\ \Rightarrow\widehat{ACK}=\widehat{EBA}\\ Tương.tự.ta.có:\widehat{CAO}=\widehat{KEB}\\ \Rightarrow\Delta ACK=\Delta EBK\left(g-g\right)\)
\(\rightarrow\dfrac{AC}{EB}=\dfrac{CK}{KB}=\dfrac{AK}{EK}\Rightarrow EK.CK=AK.KB\\ =\dfrac{\left(EK+KC\right)^2}{4}=\dfrac{\left(AK+KB\right)^2}{4}=\dfrac{AB^2}{4}\\ \Rightarrow EK+KC=AB\\ Dấu"="\Leftrightarrow\\ EA=KC\Rightarrow\Delta CKE.cân.tại.K\\ \Rightarrow Sđ\widehat{BE}=Sđ\widehat{AC}\\ \Rightarrow E\in\widehat{BC}.sao.cho.Sđ\widehat{BE}=Sđ\widehat{AC}.hay.BE=AC\)
1. Xét tam giác AEB có: AB là đường kính \(\Rightarrow\Delta AEB\) vuông tại E
Xét tứ giác HFEB có: \(\left\{{}\begin{matrix}\widehat{FHB}=90^o\\\widehat{FEB}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{FHB}+\widehat{FEB}=180^o\)
\(\Rightarrow\)Tứ giác HFEB nội tiếp đường tròn (đpcm)
2. Xét tam giác ABC có: đường kính AB \(\Rightarrow\Delta ABC\) vuông tại C
\(\Rightarrow AC^2=AH.AB\)
Mà \(\Delta AHF\sim\Delta AEB\) \(\Rightarrow AC^2=AF.AE\) (đpcm)
3. Câu này mình chịu @@
1) Vì AB là đường kính \(\Rightarrow\angle AMB=90\)
\(\Rightarrow\angle EHB+\angle EMB=90+90=180\Rightarrow EMBH\); nội tiếp
b) Vì AB là đường kính \(\Rightarrow\angle ACB=90\)
\(\Rightarrow\Delta ACB\) vuông tại C có \(CH\bot AB\Rightarrow AC^2=AH.AB\) (hệ thức lượng)
Xét \(\Delta AEH\) và \(\Delta ABM:\) Ta có: \(\left\{{}\begin{matrix}\angle AHE=\angle AMB=90\\\angle MABchung\end{matrix}\right.\)
\(\Rightarrow\Delta AEH\sim\Delta ABM\left(g-g\right)\Rightarrow\dfrac{AE}{AB}=\dfrac{AH}{AM}\Rightarrow AE.AM=AH.AB\)
\(\Rightarrow AE.AM=AC^2\Rightarrow\dfrac{AE}{AC}=\dfrac{AC}{AM}\)
Xét \(\Delta ACE\) và \(\Delta AMC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AC}{AM}\\\angle MACchung\end{matrix}\right.\)
\(\Rightarrow\Delta ACE\sim\Delta AMC\left(c-g-c\right)\Rightarrow\dfrac{AE}{AC}=\dfrac{CE}{CM}\Rightarrow AE.CM=AC.EC\)
Bạn xem lại đề, AD đâu có bằng AB đâu mà góc AEB= góc ABD
Link đây bạn xem thử
http://pitago.vn/question/tam-giac-abc-noi-tiep-duong-tron-tam-o-cac-diem-m-n-p-la-3440.html
Học tốt nhé
+) Ta có: ^ACD = ^ACB + ^BCD; ^AEC = ^ABC + ^BAD
Mà ^ACB = ^ABC (∆ABC cân tại A); ^BCD = ^BAD (hai góc nội tiếp cùng chắn một cung)
nên ^ACD = ^AEC (1)
+) Dễ có: ∆AEB ~ ∆CED (g.g) nên \(\frac{AB}{CD}=\frac{AE}{CE}=\frac{AC}{CD}\)(2)
Từ (1) và (2), ta có: ^ACD = ^AEC và \(\frac{AE}{CE}=\frac{AC}{CD}\)nên ∆AEC ~ ACD (c.g.c)
\(\Rightarrow\frac{AC}{AD}=\frac{AE}{AC}\Rightarrow AC^2=AE.AD\)(đpcm)
vì AB =AC => sđ cung AB = sđ cung AC
=> 1/2 ( sđ CD + sđ AB ) =1/2 ( sđ CD + sđ AC )
=> AEB = 1/2 sđ AD =ABD
CM tam giác ABD ~ tam giác AEB ( g-g) => AC^2 = AD.AE