K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Điểm I nếu vẽ ra thì nó nằm ở đâu vậy bạn

1 tháng 12 2017

cho tam giac ABC . vẽ 2 điểm e va f sao cho ab;ac lan luot la duong trung truc cua de va cf . goi giao diem cua è voi ab;ac theo thu tu la k ; i . cmr 3 dg thang ad ; bi ; ck dong quy tai 1 diem

10 tháng 12 2018

nhanh lên mình cần gấp lắm

10 tháng 12 2018

huhu mình mong các bạn có thể làm nhanh lên cho mình

3 tháng 4 2020

Hình tự kẻ nha

a)Xét 2 tam giác vuông ABH và ACH có

 Góc AHB = góc AHC (=90°)

 AB= AC ( tam giác ABC cân tại A)

 Góc ABC = góc ACB (tam giác ABC cân tại A)

=>2 tam giác vuông ABH=ACH (cạnh huyền -góc nhọn)

b)Tam giác ABC cân =>góc ABC=gócACB

=>gócABM=gócACN

Xét 2 tam giác ABM và ACN

AB=AC ( tam giác ABC cân tại A)

Góc ABM=góc ACN (cmt)

BM=CN(gt)

=> tam giác ABM=tam giác ACN

=>AM=AN

Do đó tam giác AMN cân tại A

c) Phần này hình như sai đề

3 tháng 4 2020

A B C M N H E F K 1 2 1 1 2 3 3 2

a) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

    \(\widehat{H_1}=\widehat{H_2}=90^0\)(gt)

   \(\widehat{B_1}=\widehat{C_1}\) (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

b) Ta có: \(\widehat{B_1}+\widehat{ABM}=180^0\)(kề bù)

      \(\widehat{C_1}+\widehat{ACN}=180^0\) (kề bù)

Mà \(\widehat{B_1}=\widehat{C_1}\) (gt) => \(\widehat{ABM}=\widehat{ACN}\)

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

  \(\widehat{ABM}=\widehat{ACN}\) (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

=> AM = AN (2 cạnh t/ứng)

=> t/giác AMN cân

c) Ta có: t/giác  MEB vuông tại A => \(\widehat{M}+\widehat{B_2}=90^0\)

    t/giác FCN vuông tại F => \(\widehat{C_2}+\widehat{N}=90^0\)
Mà \(\widehat{M}=\widehat{N}\)(Vì t/giác AMN cân tại A) => \(\widehat{B_2}=\widehat{C_2}\) (1)

Ta lại có: \(\widehat{B_2}=\widehat{B_3}\) (Đối đỉnh); \(\widehat{C_2}=\widehat{C_3}\)(đối đỉnh)       (2)

Từ (1) và (2) => \(\widehat{B_3}=\widehat{C_3}\) => t/giác BKC cân tại K

                      có KH là đường cao

  => KH cũng là đường trung trực của cạnh BC (t/c của t/giác cân) (3)

(đoạn này chưa học có thể xét t/giác KBH và t/giác KCH =>  BH = CH => KH là đường trung trực)

t/giác ABH = t/giác ACH (cm câu a) =>  BH = CH 

=> AH là đường trung tuyến

mà AH cũng là đường cao 

=> AH là đường trung trực của cạnh BC (4)

Do A \(\ne\)K (5)

Từ (3); (4); (5) => A, H, K thẳng hàng

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

21 tháng 1 2022

a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:

BC chung.

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).

=> BN = CM (2 cạnh tương ứng).

Ta có: AB = AN + BN; AC = AM + CM.

Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).

=> AM = AN.

b) Xét tam giác AMN: AM = AN (cmt).

=> Tam giác AMN cân tại A.

c) Xét tam giác ABC: 

BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).

I là giao điểm của BM và CN (gt).

=> I là trực tâm.

=> AI là đường cao.

Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.

=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).

14 tháng 11 2017

giúp mình với ạ 

14 tháng 11 2017

Tương tự bài kia của bạn mà mk vừa làm

https://olm.vn/hoi-dap/detail/94359836666.html

tương tự bài ở link này (mình gửi cho)

Học tốt!!!!!!!!!!!!!!

Ta có : \(\widehat{A}=60^o\) nên trong tam giác ABC có :

\(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)

\(\Rightarrow\widehat{B_1}+\widehat{C_1}=120^o:2=60^o\)( góc ngoài tam giác BIC ) 

Kẻ tia phân giác ID của \(\Delta BIC\) .

Ta có : \(\widehat{BID}=\widehat{DIC}=60^o\)

\(\widehat{B_1}=\widehat{B_2}\) 

BI cạnh chung ( \(\widehat{BIN}=\widehat{BID}=60^o\))

Vậy \(\Delta BIN=\Delta BID\left(g.c.g\right)\)

Suy ra : BN = BD (1)

Chứng minh tương tự ( giống phần trên ạ ) , \(\Delta CIM=\Delta CID\left(g.c.g\right)\)

Suy ra : CM = CD (2)

Từ (1) và (2) suy ra : BN + CM = BD + CD = BC

Vậy BN + CM = BC