Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác BHCDBHCD có:
BH//DC (do cùng ⊥AC
CH//BD (do cùng ⊥AB
⇒BHCD là hình bình hành (
b) Do BHCDà hình bình hành
gọi HD∩BC=I
I là trung điểm cạnh HD (1)
Gọi HE∩BC=G
ΔBHE có BGBG vừa là đường cao vừa là trung tuyến nên ΔBHE cân đỉnh B
⇒GH=GE
=>G là trung điểm cạnh HE(2)
Từ (1) và (2) ⇒IG là đường trung bình của ΔHEDΔ
⇒IG//ED⇒BC//ED (đpcm)
b: Xét ΔABC có
I là trung điểm của BC
IH//AC
Do đó: H là trung điểm của AB
Xét tứ giác AIBQ có
H là trung điểm của đường chéo AB
H là trung điểm của đường chéo IQ
Do đó: AIBQ là hình bình hành
mà AB\(\perp\)IQ
nên AIBQ là hình thoi
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
#)Giải :
(Bạn tự vẽ hình :P)
a) Xét ΔABC có:
IB = IA ( I là tia đối của AB)
BM = CM (M là tia đối của BC)
=> IM là đương trung bình của ΔABC
=> IM // AC và IM = 1/2AC
mà AK = 1/2AC (K là tia đối của AC) và K thuộc AC
=> IM // AK và IM = AK
=> Tứ giác AIMK là hình bình hành có góc A = 90o
=> AIMK là hình chữ nhật
Có : IA = IB = AB/2= 6/2= 3 (I là tia đối của AB)
AK = CK = AC/2= 8/2= 4 (K là tia đối của AC)
Diện tích hình chữ nhật AIMK :
SAIMK = AI.AK = 3.4 = 12 cm2
b) Áp dụng Py-ta-go vào Δ vuông ABC có:
BC2 = AB2 + AC2
hay BC2 = 62 + 82 = 100
=> BC = 10
Xét Δ vuông ABC có :
AM là đường trung tuyến ứng với BC
=> AM = 1/2BC = 1/2.10
=> AM = 5
Vậy AM = 5cm
c) Có IM = AK (cạnh đối hình chữ nhật AIMK)
mà JI = JM = 1/2IM và SA = SK = 1/2AK
=> JI = JM = SA = SK (1)
Có IA = MK (cạnh đối hình chữ nhật AIMK )
mà PI = PA = 1/2IA và HM = HK = 1212MK
=> PI = PA = HM = HM (2)
Có góc A = góc I = góc M = góc K (3)
Từ (1) (2) và (3) suy ra :
ΔPIJ = ΔPAS = ΔHKS = ΔHKJ (c-g-c)
=> JP = JH = SP = SH (các cạnh tương ứng )
=> Tứ giác JPSH là hình thoi
=> PH vuông góc với JS (tính chất đường chéo hình thoi)