K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tứ giác BHCDBHCD có:
BH//DC  (do cùng ⊥AC
CH//BD   (do cùng ⊥AB
⇒BHCD là hình bình hành (
b) Do BHCDà hình bình hành

gọi HD∩BC=I

I là trung điểm cạnh HD (1)
Gọi HE∩BC=G

ΔBHE có BGBG vừa là đường cao vừa là trung tuyến nên ΔBHE cân đỉnh B
⇒GH=GE

=>G là trung điểm cạnh HE(2)
Từ (1) và (2) ⇒IG là đường trung bình của ΔHEDΔ
⇒IG//ED⇒BC//ED (đpcm)

b: Xét ΔABC có

I là trung điểm của BC

IH//AC

Do đó: H là trung điểm của AB

Xét tứ giác AIBQ có 

H là trung điểm của đường chéo AB

H là trung điểm của đường chéo IQ

Do đó: AIBQ là hình bình hành

mà AB\(\perp\)IQ

nên AIBQ là hình thoi

3 tháng 8 2017

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

=

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

QM

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

tóm lị là ABGHMN là sai 

3 tháng 8 2017

Vậy tóm lại là sao, mk hk hỉu

2 tháng 7 2019

#)Giải : 

(Bạn tự vẽ hình :P)

a) Xét ΔABC có:

IB = IA ( I là tia đối của AB)

BM = CM (M là tia đối của BC)

=> IM là đương trung bình của ΔABC

=> IM // AC và IM = 1/2AC

mà AK = 1/2AC (K là tia đối của AC) và K thuộc AC

=> IM // AK và IM = AK

=> Tứ giác AIMK là hình bình hành có góc A = 90o

=> AIMK là hình chữ nhật

Có : IA = IB = AB/2= 6/2= 3 (I là tia đối của AB)

AK = CK = AC/28/2= 4 (K là tia đối của AC)

Diện tích hình chữ nhật AIMK :

SAIMK = AI.AK = 3.4 = 12 cm2

b) Áp dụng Py-ta-go vào Δ vuông ABC có:

BC2 = AB2 + AC2

hay BC2 = 62 + 82 = 100

=> BC = 10

Xét Δ vuông ABC có :

AM là đường trung tuyến ứng với BC

=> AM = 1/2BC = 1/2.10

=> AM = 5

Vậy AM = 5cm

c) Có IM = AK (cạnh đối hình chữ nhật AIMK)

mà JI = JM = 1/2IM và SA = SK = 1/2AK

=> JI = JM = SA = SK (1)

Có IA = MK (cạnh đối hình chữ nhật AIMK )

mà PI = PA = 1/2IA và HM = HK = 1212MK

=> PI = PA = HM = HM (2)

Có góc A = góc I = góc M = góc K (3)

Từ (1) (2) và (3) suy ra :

ΔPIJ = ΔPAS = ΔHKS = ΔHKJ (c-g-c)

=> JP = JH = SP = SH (các cạnh tương ứng )

=> Tứ giác JPSH là hình thoi

=> PH vuông góc với JS (tính chất đường chéo hình thoi)