K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

vậy câu c làm sao bạn ? mik làm dc 2 câu ấy chỉ lưa câu c thôi... bạn giúp mik được ko ?

 

3 tháng 5 2016

a)Xét tam giác ACD và tam giác ECD(đều là vuông)banh

         ECD=DCA(Vì CD là p/giác)

          CD là cạnh chung

\(\Rightarrow\)tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)

b)Vì tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)

\(\Rightarrow\)AD=DE(cạnh cặp tương ứng)

\(\Rightarrow\)D cách đều hai mút của AE

\(\Rightarrow\)CD là đường trung trực của AE

       Do đó CI\(\perp\)AE

\(\Rightarrow\)Tam giác CIE là tam giác vuông

c)Vì AD=DE(câu b)

Mà tam giác BDE là tam giác vuông(tại E)

\(\Rightarrow\)DE<BD(cạnh góc vuông nhỏ hơn cạnh huyền)

\(\Rightarrow\)AD<BD(đpcm)

d)Kéo dài BK cắt AC tại O

Vì BK\(\perp\)CD(gt)

\(\Rightarrow\)CK là đường cao thứ nhất của tam giác OBC(1)

Vì tam giác ABC vuông tại A

Nên BA\(\perp\)AC

\(\Rightarrow\)BA là đường cao thứ hai của tam giác OBC(2)

Theo đề bài ta có DE\(\perp\)BC

Nên DE là đường cao thứ ba của tam giác OBC(3)

      Từ (1),(2) và (3) suy ra:

Ba đường cao giao nhau tại một điểm trùng với điểm D

\(\Rightarrow\) 3 đường thẳng AC;DE;BK đồng quy(đpcm)

28 tháng 11 2016

mọi người rảnh thì vào giải hộ tớ bài toán cái

Bài 11:Cho đường tròn(O) đường kính AB=2R. Điểm C thuộc đường tròn(C không trùng với A và B).Trên nửa mặt phẳng bờ AB có chứa điểm C kẻ tiếp tuyến à với (O).Gọi M là điểm chính giữa cung nhỏ AC. Tia BC cắt Ax tại Q,AM cắt BC tại N, AC cắt BM tại P.a) Gọi K là điểm chính giữa cung AB(cung không chứa C).HỎi có thể xảy ra trường hợp 3 điểm Q,M,K thẳng hàng không?b) Xác định vị trí của C...
Đọc tiếp

Bài 11:Cho đường tròn(O) đường kính AB=2R. Điểm C thuộc đường tròn(C không trùng với A và B).Trên nửa mặt phẳng bờ AB có chứa điểm C kẻ tiếp tuyến à với (O).Gọi M là điểm chính giữa cung nhỏ AC. Tia BC cắt Ax tại Q,AM cắt BC tại N, AC cắt BM tại P.

a) Gọi K là điểm chính giữa cung AB(cung không chứa C).HỎi có thể xảy ra trường hợp 3 điểm Q,M,K thẳng hàng không?

b) Xác định vị trí của C trên nửa đường tròn tâm O để đường tròn ngoại tiếp tam giác MNQ tiếp xúc với (O).

Bài 12: Cho tứ giác ABCD có đường chéo BD không là phân giác của góc ABC và góc CDA.Một điểm P nằm trong tứ giác sao cho góc PBC=góc DBA; góc PDC = góc BDA.Chứng minh rằng tứ giác ABCD nội tiếp khi và chỉ khi AP=CP

Bài 13:Cho tam giác ABC có chu vi bằng 2p không đổi ngoại tiếp 1 đường tròn(O).Dựng tiếp tuyến MN với (O) sao cho MN song song với AC;M thuộc cạnh AB,N thuộc cạnh BC.Tính AC theo p để độ dài đoạn MN đạt giá trị lớn nhất.

Bài 14: Trong một tam giác cho trước hãy tìm bán kính lớn nhất của hai đường tròn bằng nhau tiếp xúc ngoài nhau đồng thời mỗi đường tròn tiếp xúc với hai cạnh của tam giác đó.

Bài 15: Trên cạnh AB của tam giác ABC lấy một điểm D sao cho đường tròn nột tiếp tam giác ACD và BCD bằng nhau

a) Tính đoạn CD theo các cạnh của tam giác

b)CMR: Điều kiện cần và đủ để góc C = 90 độ là điện tích tam giác ABC bằng diện tích hình vuông cạnh CD

Bài 16: Cho hình thang vuông ABCD có AB là cạnh đáy nhỏ,CD là cạnh đáy lớn,M là giao của AC và BD.Biết rằng hình thang ABCD ngoại tiếp đường tròn bán kính R.Tính diện tích tam giác ADM theo R

Bài 17:Cho tam giác ABC không cân,M là trung điểm cạnh BC,D là hình chiếu vuông góc của A trên BC; E và F tương ứng là các hình chiếu vuông góc của B và C trên đường kính đi qua A của đường tròn ngoại tiếp tam giác ABC.CMR: M là tâm đường tròn ngoại tiếp tam giác DEF

Bài 18: Cho đoạn thẳng AB, điểm C nằm giữa A và B, Tia Cx vuông góc với AB.Trên tia Cx lấy D và E sao cho CECB=CACD=3√CECB=CACD=3. Đường tròn ngoại tiếp tam giác ADC cắt đường tròn ngoại tiếp tam giác BEC tại H(H khác C). CMR: HC luôn đi qua một điểm cố định khi C chuyển động trên đoạn AB.Bài toán còn đúng không khi thay 3√3 bởi m cho trước(m>0)

Bài 19: Cho tam giác ABC nhọn và điểm M chuyện động trên đường thẳng BC.Vẽ trung trực của các đoạn BM và CM tương ứng cắt các đường thẳng AB và AC tại P và Q.CMR: Đường thẳng qua M và vuông góc với PQ đi qua 1 điểm cố định

Bài 20: Cho tam giác ABC và một đường tròn (O) đi qua A và C.Gọi K và N là các giao điểm của (O) với các cạnh AB,C.ĐƯờng tròn (O1) và (O2) ngoại tiếp tam giác ABC và tam giác KBN cắt nhau tại B và M.CMR: O1O2 song song với OM

 

Giúp t vs..^^^

6
21 tháng 2 2016

Dài thế này ai mà lm đc cho m k lm nữa

6 tháng 3 2016

làm hết dc đống bài này chắc mình ốm mấtkhocroi

12 tháng 10 2019

A B C I S D E F G K L K' M x

Gọi giao điểm khác D của hai đường tròn (BED);(CFD) là K'; K'I cắt EF tại L; DL cắt (I;ID) tại M khác D.

Ta thấy IE = IF; AI là phân giác ngoài của ^EAF, từ đây dễ suy ra 4 điểm A,E,I,F cùng thuộc một đường tròn

Vì 3 điểm D,F,E lần lượt thuộc các cạnh BC,CA,AB của \(\Delta\)ABC nên (BED);(CFD);(AFE) đồng quy (ĐL Miquel)

Hay điểm K' thuộc đường tròn (AIFE). Do vậy LI.LK' = LE.LF = LD.LM (= PL/(G) = PL/(I) )

Suy ra 4 điểm K',M,I,D cùng thuộc một đường tròn. Mà ID = IM nên ^IK'D = ^IK'M.

Đồng thời ^DIM = 1800 - ^DK'M = 1800 - ^EK'F + 2.^FK'D = ^BAC + 2.^ACB = 2.^AID

Suy ra IA vuông góc DM, từ đó M,L,D,A thẳng hàng (Vì IA cũng vuông góc AD)

Khi đó dễ thấy AL là phân giác ^BAC, K'L là phân giác ^EK'F, mà tứ giác AEK'F nội tiếp

Suy ra AEK'F là tứ giác điều hòa, từ đây AK' là đường đối trung của \(\Delta\)AEF

Suy ra K' trùng K. Kẻ tiếp tuyến Kx của (G), ta có ^BKx = ^EKx - ^EKB = ^EFK - ^EFD = ^BCK

Do đó (BKC) tiếp xúc với (G) tại K, tức KG đi qua tâm của (BKC)   (1)

Gọi S là trung điểm cung lớn BC của (ABC). Có SB = SC và ^BKC = ^AED + ^AFD = 1800 - ^BSC/2

Suy ra S là tâm của đường tròn (BKC)                                             (2) 

Từ (1) và (2) suy ra KG luôn đi qua S cố định (Vì S là trung điểm cùng BC lớn cố định) (đpcm).

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác BEFC có:}\)

\(\text{∠BEC = 90 o (CE là đường cao)}\)

\(\text{∠BFC = 90 ^0 (BF là đường cao)}\)

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BEFC là tứ giác nội tiếp

\(\text{Xét tứ giác AEHF có:}\)

\(\text{∠AEH = 90 o (CE là đường cao)}\)

\(\text{∠AFH = 90 o (BF là đường cao)}\)

=> ∠AEH + ∠AFH = 180^ o

=> Tứ giác AEHF là tứ giác nội tiếp.

\(\text{b) Xét ΔSBE và ΔSFC có:}\)

\(\text{∠FSC là góc chung}\)

\(\text{∠SEB = ∠SCF (Tứ giác BEFC là tứ giác nội tiếp)}\)

=> ΔSBE ∼ ΔSFC (g.g)

\(\Rightarrow\frac{SB}{SF}\)=\(\frac{SE}{SC}\)\(\Rightarrow\text{SE.SF = SB.SC (1)}\)

\(\text{Xét ΔSMC và ΔSNB có:}\)

\(\text{∠ NSC là góc chung}\)

\(\text{∠ SCM = ∠SNB (Hai góc nội tiếp cùng chắn cung MB)}\)

=> ΔSMC ∼ ΔSBN (g.g)

\(\Rightarrow\frac{SM}{SB}\)=\(\frac{SC}{SN}\Rightarrow\text{SM.SN = SB.SC (2)}\)

Từ (1) và (2) => SE.SF = SM.SN

\(\text{c) Ta có:}\)

\(\hept{\begin{cases}\widehat{KAE}=\widehat{KCB}\left(\text{2 GÓC NỘI TIẾP CÙNG CHẮN CUNG KB}\right)\\\widehat{HAE}=\widehat{BFM}\left(\text{TỨ GIÁC AEHF LÀ TỨ GIÁC NỘI TIẾP}\right)\\\widehat{KCB}=\widehat{BFM}\left(\text{TỨ GIÁC BEFC LÀ TỨ GIÁC NỘI TIẾP}\right)\end{cases}}\)

=> ∠KAE = ∠HAE

=> AE là tia phân giác của góc ∠KAH

\(\text{Mà AE cũng là đường cao của tam giác KAH}\)

=> ΔKAH cân tại A

=> AE là đường trung tuyến của ΔKAH

=> E là trung điểm của KH hay K và H đối xứng nhau qua AB

\(\text{d) Tia BF cắt đường tròn (O) tại J}\)

∠KJB = ∠KCB (2 góc nội tiếp cùng chắn cung KB)

∠KCB = ∠EFH (tứ giác BEFC là tứ giác nội tiếp )

=> ∠KJB = ∠EFH

Mà 2 góc này ở vị trí so le trong

=> KJ // EF

KI // EF (gt)

=> I ≡ J

=> H, F, J thẳng hàng

HÌNH THÌ VÀO XEM THỐNG KÊ HỎI ĐÁP NHA

BÀI LÀM ĐÚNG MÀ SAO CÓ NGƯỜI K SAI TÔI ĐẢM BẢO BÀI NÀY ĐÚNG 100%

4 tháng 2 2017

A B C I H K 1 2

Giải:
Xét \(\Delta AHI,\Delta AKI\) có:
\(\widehat{AHI}=\widehat{AKI}=90^o\)

AI: cạnh chung

\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)

\(\Rightarrow\Delta AHI=\Delta AKI\) ( c.huyền - g.nhọn )

\(\Rightarrow HI=KI\) ( cạnh t/ứng ) (1)

Xét \(\Delta BHI,\Delta CKI\) có:
IB = IC ( gt )

\(\widehat{BHI}=\widehat{CKI}=90^o\)

IH = IK ( theo (1) )

\(\Rightarrow\Delta BHI=\Delta CKI\) ( c.huyền - c.g.vuông)

\(\Rightarrow BH=CK\) ( cạnh t/ứng ) ( đpcm )

Vậy...

30 tháng 3 2021

Add: Tr Ph Thảo (hpthaoo)

18 tháng 5 2021

A B(5;1) C D E F(4;3) G d:x+2y-18=0

Gọi AF giao BC tại G. Theo ĐL Thales thì \(\frac{FA}{FG}=\frac{ED}{EB}=1\), suy ra F là trung điểm AG

Dễ thấy tam giác ABG cân tại B,do đó AG vuông góc BF

Đường thẳng AG: đi qua \(F\left(4;3\right)\), VTPT \(\overrightarrow{FB}=\left(1;-2\right)\)\(\Rightarrow AG:x-2y+2=0\)

Xét hệ \(\hept{\begin{cases}x+2y-18=0\\x-2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\Rightarrow A\left(8;5\right)}\)

Vì F là trung điểm AG nên \(G\left(0;1\right)\)\(\Rightarrow\overrightarrow{GB}=\left(5;0\right)\)=> VTPT của BC là \(\left(0;1\right)\)

\(\Rightarrow BC:x-1=0\). Vậy \(d\left(O;BC\right)=1.\)