K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1 tháng 10 2021
Kẻ BH // với AC
Ta có :
AB=BD
AH//AC
=>BH là đường trung bình của tam giác ADK
=> BH =1/2 AK
Xét ΔBHM và ΔKMC có :
KMC^ = BMH^ (đối đỉnh)
CM=MB
ˆMBH=ˆCKM ( so le trong )
=> ΔBHM và ΔKMC (g-c-g)
=> KC=BH = 1/2 AK
Hay AK= 2 KC
PL
1 tháng 10 2021
Kẻ \(BH\text{//}AC\), ta có :
\(AB=BD\)
\(AH\text{//}AC\)
\(\Rightarrow BH\) là đường trung bình của \(\bigtriangleup ADK\)
\(\Rightarrow BH=\frac{1}{2}AK\)
Xét \(\bigtriangleup BHM\) và \(\bigtriangleup KMC\) có
\(\widehat{KMC}=\widehat{BMH}\) (đđ)
\(CM=MC\)
\(\widehat{MBH}=\widehat{CKM}\) (so le trong)
\(\Rightarrow\bigtriangleup BHM\) và \(\bigtriangleup KMC\) (g.c.g)
\(\Rightarrow KC=BH=\frac{1}{2}AK\) hay \(AK=2KC\)
A B C M N P
a) Xét \(\Delta AMN\) và \(\Delta CNP\) có :
\(AN=NC\left(gt\right)\)
\(\widehat{ANM}=\widehat{CNP}\) (đối đỉnh)
\(MN=NP\left(gt\right)\)
=> \(\Delta AMN\) = \(\Delta CNP\) (c.g.c)
=> \(\widehat{MAN}=\widehat{NCP}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> CP // AB (đpcm)
b) Từ : \(\Delta AMN\) = \(\Delta CNP\) (cmt)
=> MB = PC (2 cạnh tương ứng)
c) Xét \(\Delta ABC\) có :
\(AM=MB\left(gt\right)\)
\(AN=NC\left(gt\right)\)
=> MN là đường trung bình của \(\Delta ABC\)
=> \(MN=\dfrac{1}{2}BC\)
Hay : BC = 2MN (đpcm)
cảm ơn bạn