K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì OM//BC nên \(\widehat{MOB}=\widehat{MBO}\)

Ví ON//BC nên\(\widehat{ONC}=\widehat{OCN}\)

Xét \(\Delta BOM\)có \(\widehat{MOB}=\widehat{MBO}\)=> \(\Delta BOM\)cân (t/c)=> MB=MO

Xét \(\Delta OCN\)có \(\widehat{ONC}=\widehat{OCN}\)=> \(\Delta OCN\)cân (t/c)=> ON=NC

Ta lại có MO+ON=MN

=> BM+CN=MN (đpcm)

10 tháng 5 2020

Vì OM // BC nên \(\widehat{MOB}\)\(\widehat{MBO}\)

Vì ON // BC nên \(\widehat{ONC}\)\(\widehat{OCN}\)

Xét \(\Delta BOM\)có \(\widehat{MOB}\)\(\widehat{MBO}\)=> \(\Delta BOM\)cân (t/c) => MB = MO

Xét \(\Delta OCN\)có \(\widehat{ONC}\)\(\widehat{OCN}\)=> \(\Delta OCN\)cân (t/c) => ON = NC

Ta có MO + ON = MN

=> BM + CN = MN ( đpcm )

31 tháng 8 2020

A B C I N M 1 2 1 2 1 2

Ta có: BI là phân giác \(\widehat{ABC}\Rightarrow\widehat{B_1}=\widehat{B_2}\)

          CI là phân giác \(\widehat{ACB}\Rightarrow\widehat{C_1}=\widehat{C_2}\) 

\(MN//BC\Rightarrow\widehat{I_1}=\widehat{B_2}\),\(\widehat{I_2}=\widehat{C_2}\)

+) Vì \(\widehat{B_1}=\widehat{B_2}\);\(\widehat{I_1}=\widehat{B_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{I_1}\Rightarrow\Delta MBI\)cân tại M

\(\Rightarrow MB=MI\)

+) Vì \(\widehat{C_1}=\widehat{C_2}\);\(\widehat{I_1}=\widehat{C_2}\)

\(\Rightarrow\widehat{C_1}=\widehat{I_2}\Rightarrow\Delta NCI\)Cân tại N

\(\Rightarrow NC=NI\)

Ta có: \(MN=MI+NI\)

mà \(MB=MI\);\(NC=NI\)

\(\Rightarrow MN=MB+NC\left(đpcm\right)\)

26 tháng 2 2019

Đáp án A

13 tháng 1 2019

10 tháng 5 2021

úi lụn bai ko xóa ik dc

undefinedundefined
MN = 3+4 =7 (cm)

19 tháng 10 2019